
Beej’s Guide to Python Programming
For Beginners

Brian “Beej Jorgensen” Hall

v0.0.13, Copyright © June 24, 2025

Contents

1 Intro 1
1.1 Audience . 1
1.2 Platform and Tools . 1
1.3 Official Homepage and Books For Sale . 1
1.4 Email Policy . 2
1.5 Mirroring . 2
1.6 Note for Translators . 2
1.7 Copyright, Distribution, and Legal . 2
1.8 Dedication . 3
1.9 Publishing Information . 3

2 What is Programming, Anyway? 4
2.1 Objectives . 4
2.2 More Terminology Than You Wanted . 4
2.3 What’s This Talk About Problem Solving? . 5
2.4 So How To Solve It? . 5
2.5 What is Python? . 6
2.6 Summary . 6

3 What software will I need? 7
3.1 Objectives . 7
3.2 What Is All This? . 7
3.3 Installing Python . 7

3.3.1 Windows . 7
3.3.2 Mac . 8
3.3.3 Linux/Unix-likes . 8

3.4 Running IDLE . 8
3.5 Your First Command . 8
3.6 Summary . 9

4 How do I write a program? 10
4.1 Objectives . 10
4.2 The Problem That Needs Solving . 10
4.3 Launching your IDE and Opening a File . 10
4.4 Running the Program! . 11
4.5 Exercises . 11
4.6 Summary . 11

5 Data and Processing Data 12
5.1 Objective . 12
5.2 Data, Variables, and Math . 12
5.3 Assigning from One Variable to Another . 15
5.4 Your Mental Model of Computation . 16
5.5 User Input . 16
5.6 Data Types . 17
5.7 Converting Between Data Types . 18
5.8 Input Two Numbers and Print the Sum . 19
5.9 Wrapping it Up . 20

i

CONTENTS ii

5.10 Exercises . 21
5.11 Summary . 22

6 Flow Control and Looping 24
6.1 Objective . 24
6.2 Chapter Project Specification . 24
6.3 What is Flow Control? . 24
6.4 Boolean Algebra and Expressions . 25
6.5 Boolean Operations in Python . 27
6.6 The Almighty if Statement . 28
6.7 And Now: while Loops! . 29
6.8 Looping: for Loops . 30
6.9 When while and When for? . 31
6.10 Chapter Project . 31
6.11 Exercises . 34
6.12 Summary . 35

7 Strings 36
7.1 Objective . 36
7.2 Chapter Project Specification . 36
7.3 What is a String? . 36
7.4 Creating Strings . 37
7.5 Converting Other Types To Strings and Vice Versa 37
7.6 String Concatenation with + . 38
7.7 Midterm Challenge . 38
7.8 Getting Individual Characters From Strings . 39
7.9 Slices . 40
7.10 Midterm Challenge . 40
7.11 Interlude: Mutable versus Immutable Types . 41
7.12 for-loops with Strings . 42
7.13 String Functions and Methods . 42
7.14 Formatted Output with F-Strings . 44

7.14.1 .format()Method . 46
7.14.2 % printf Operator . 46

7.15 Chapter Project . 46
7.16 Exercises . 49
7.17 Summary . 50

8 Lists 51
8.1 Objective . 51
8.2 Chapter Project Specification . 51
8.3 What Are Lists? . 51
8.4 List Assignments . 53
8.5 for and Lists—Powerful Stuff . 54
8.6 for and enumerate() . 55
8.7 Midterm: Doubling The Values . 55
8.8 Built-in Functions for Lists . 56
8.9 What Good Are They? . 58
8.10 Midterm Challenge . 58
8.11 Building New Lists, Repeating and Empty . 60
8.12 List Comprehensions . 61
8.13 Lists of Lists . 62
8.14 Chapter Project Implementation . 63
8.15 Exercises . 71
8.16 Summary . 72

9 Dictionaries 73
9.1 Objective . 73
9.2 Chapter Project Specification . 73

CONTENTS iii

9.3 What are Dictionaries? . 74
9.4 Initializing a Dictionary . 75
9.5 Speed Demon . 75
9.6 Does this dict have this key? . 75
9.7 Iterating over Dictionaries . 76
9.8 Common Built-in Dictionary Functionality . 77
9.9 Dictionary Comprehensions . 78
9.10 Dictionaries of Dictionaries . 78
9.11 Dictionaries are Mutable . 79
9.12 The Chapter Project . 79
9.13 Exercises . 84
9.14 Summary . 85

10 Functions 86
10.1 Objective . 86
10.2 Chapter Project Specification . 86
10.3 What Are Functions? . 87
10.4 Using Built-In Functions . 87
10.5 Arguments . 88
10.6 Writing Your Own Functions . 89
10.7 Multiple Return Values . 91
10.8 What Makes a Good Function . 92
10.9 Positional Arguments versus Keyword Arguments 92
10.10 Interlude: Evaluation Strategies . 93
10.11 The Chapter Project . 94
10.12 Exercises . 100
10.13 Summary . 101

11 Classes and Objects 102
11.1 Objective . 102
11.2 Chapter Project Specification . 102
11.3 What Problem Are We Even Trying To Solve? . 103
11.4 What are Classes and Objects? . 104
11.5 Making Different StarShips . 104
11.6 Attributes . 106
11.7 Using Attributes . 106
11.8 More on Methods . 107
11.9 Pretty Printing . 108
11.10 Objects are Mutable . 109
11.11 Objects and None . 109
11.12 Testing for Attributes . 110
11.13 Chapter Project . 111
11.14 Exercises . 115
11.15 Summary . 117

12 Importing Modules 118
12.1 Objective . 118
12.2 Chapter Project Specification . 118
12.3 What and Why of Modules . 118
12.4 Using a Module . 119
12.5 Command Line Arguments . 119
12.6 Printing Calendars . 120
12.7 Importing Specific Attributes . 124
12.8 Learning All The Modules . 125
12.9 Chapter Project . 126
12.10 Exercises . 128
12.11 Summary . 131

13 Reading Files 132

CONTENTS iv

13.1 Objective . 132
13.2 Project . 132
13.3 What are Files, Anyway? . 133
13.4 Reading Files, The Classic Way . 134
13.5 Opening Files with with . 135
13.6 Reading Data a Line at a Time . 136
13.7 Writing files . 137
13.8 Chapter Project . 137
13.9 Exercises . 153
13.10 Summary . 155

14 Exceptions 156
14.1 Objective . 156
14.2 Project . 156
14.3 Errors in Programs . 156
14.4 Classic Error Handling . 156
14.5 Error Handling with Exceptions . 157
14.6 Catching Exceptions . 158
14.7 Catching Multiple Exceptions . 159
14.8 Catching Multiple Exceptions II . 161
14.9 Getting More Exception Information . 161
14.10 Catching All Exceptions . 161
14.11 Finally finally . 162
14.12 What Else? else! . 163
14.13 Exception Objects . 163
14.14 Raising Exceptions . 164
14.15 Re-raising Exceptions . 166
14.16 Project Implementation . 166
14.17 Exercises . 170
14.18 Summary . 171

15 Appendix A: Basic Math for Programmers 172
15.1 Arithmetic . 172
15.2 Division in Python . 173
15.3 Modulo, AKA Remainder . 173
15.4 Negative numbers . 174
15.5 Absolute Value . 174
15.6 The Power of Exponents . 175
15.7 Parentheses . 176
15.8 Square root . 177
15.9 Factorial . 178
15.10 Scientific notation . 179
15.11 Logarithms . 179
15.12 Rounding . 180
15.13 Large Numbers . 182

16 Appendix B: The REPL 183
16.1 What is the REPL? . 183
16.2 Calculator . 184
16.3 Getting Help . 184
16.4 dir()—Quick and Dirty Help . 185
16.5 Getting out of the REPL . 186

17 Appendix C: Assignment Behavior 187
17.1 How This Relates To Functions . 188
17.2 Is Any of This True? . 188
17.3 Python Compiler Optimizations . 189
17.4 Internment . 189

CONTENTS v

18 Appendix D: Number Bases 191
18.1 How to Count like a Boss . 191
18.2 Number Bases . 192
18.3 Hexadecimal, Base 16 . 193
18.4 Specifying the Number Base in Python . 193

19 Accelerating Beyond IDLE 194
19.1 Objectives . 194
19.2 What with the What Now? . 194
19.3 The Terminal . 194

19.3.1 The Shell . 194
19.3.2 Windows Terminals and Shells . 195
19.3.3 Windows gitbash . 195
19.3.4 Windows WSL . 195
19.3.5 Mac . 196
19.3.6 Linux/Unix-likes . 196

19.4 Installing an IDE . 196
19.4.1 Windows VS Code . 196
19.4.2 Mac . 196
19.4.3 Linux and other Unix-likes . 196

19.5 Running VS Code . 196
19.6 Using a Barebones Editor and Terminal . 196

19.6.1 Start with the Terminal . 197
19.7 Launching Your Code Editor . 197
19.8 Running the Program! . 198
19.9 Exercises . 199
19.10 Summary . 199

Chapter 1

Intro

This is an alpha-quality book. There are mistakes, oh yes. When you find them, please drop an issue in
GitHub, or a pull request, or email me at beej@beej.us. When the number of defects gets low enough,
I’ll offer a print version.

Hey, everyone! Have you been thinking about learning to program? Have you also been thinking of how
to do it in the easy-to-approach Python programming language?

Yes? Then this is the book for you. We’re going to start with the absolute basics and build up from there,
building up to being an intermediate developer and problem-solver! Python is the language we’ll be using
to make this happen.

But by the end of the book, you will have developed programming techniques that transcend languages.
After picking up Python, maybe try another language like JavaScript, Go, or Rust. They all have their
own features to explore and learn.

1.1 Audience
Beginning programmers. If you have limited experience or no experience, this book is targeted at you!

Attitude Prerequisite: be inquisitive, curious, have an eye for puzzles and problem solving, and be willing
to take on difficult challenges.

Technical Prerequisite: be a computer user. You know what files are, how to move them and delete them,
what subdirectories (folders) are, can install software, and how to type.

Are you a seasoned developer looking to start with Python? I’m sorry but this is not likely to be the book
you’re looking for. It will progress too slowly for your tastes. Just jump straight into the official Python
documentation1.

1.2 Platform and Tools
I make an effort in this book to cover Mac, Windows, and Unix variants (via Arch Linux).

We’ll cover installing Python 3 and the Visual Studio Code editor. (Both are free.) If you already have
a code editor you prefer using (Vim, Emacs, Sublime, Atom, PyCharm, etc.) feel free to use that. This
book’s 100% certified editor agnostic!

1.3 Official Homepage and Books For Sale
The official location of this document is:

• http://beej.us/guide/bgpython/

1https://docs.python.org/3/

1

mailto:beej@beej.us
https://docs.python.org/3/
https://docs.python.org/3/
http://beej.us/guide/bgpython/

Chapter 1. Intro 2

There you will also find example code.

1.4 Email Policy
I’m generally available to help out with email questions so feel free to write in, but I can’t guarantee a
response. I lead a pretty busy life and there are times when I just can’t answer a question you have. When
that’s the case, I usually just delete the message. It’s nothing personal; I just won’t ever have the time to
give the detailed answer you require.

As a rule, the more complex the question, the less likely I am to respond. If you can narrow down your
question before mailing it and be sure to include any pertinent information (like platform, compiler, error
messages you’re getting, and anything else you think might help me troubleshoot), you’re much more
likely to get a response. For more pointers, read ESR’s document, How To Ask Questions The Smart
Way2.

If you don’t get a response, hack on it some more, try to find the answer, and if it’s still elusive, then write
me again with the information you’ve found, and hopefully, it will be enough for me to help out.

Now that I’ve badgered you about how to write and not write me, I’d just like to let you know that I fully
appreciate all the praise the guide has received over the years. It’s a real morale boost, and it gladdens me
to hear that it is being used for good! :-) Thank you!

1.5 Mirroring
You are more than welcome to mirror this site, whether publicly or privately. If you publicly mirror the
site and want me to link to it from the main page, drop me a line at beej@beej.us.

1.6 Note for Translators
If you want to translate the guide into another language, write me at beej@beej.us and I’ll link to your
translation from the main page. Feel free to add your name and contact info to the translation.

This source markdown document uses UTF-8 encoding.

Please note the license restrictions in the Copyright, Distribution, and Legal section, below.

If you want me to host the translation, just ask. I’ll also link to it if you want to host it; either way is fine.

1.7 Copyright, Distribution, and Legal
Beej’s Guide to Python Programming is Copyright © 2019 Brian “Beej Jorgensen” Hall.

With specific exceptions for source code and translations, below, this work is licensed under the Creative
Commons Attribution- Noncommercial- No DerivativeWorks 3.0 License. To view a copy of this license,
visit

https://creativecommons.org/licenses/by-nc-nd/3.0/

or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105,
USA.

One specific exception to the “No Derivative Works” portion of the license is as follows: this guide may
be freely translated into any language, provided the translation is accurate, and the guide is reprinted in
its entirety. The same license restrictions apply to the translation as to the original guide. The translation
may also include the name and contact information for the translator.

The source code presented in this document is hereby granted to the public domain, and is completely free
of any license restriction.

Educators are freely encouraged to recommend or supply copies of this guide to their students.
2http://www.catb.org/~esr/faqs/smart-questions.html

http://www.catb.org/~esr/faqs/smart-questions.html
http://www.catb.org/~esr/faqs/smart-questions.html
beej@beej.us
beej@beej.us
https://creativecommons.org/licenses/by-nc-nd/3.0/

Chapter 1. Intro 3

Unless otherwise mutually agreed by the parties in writing, the author offers the work as-is and makes
no representations or warranties of any kind concerning the work, express, implied, statutory or other-
wise, including, without limitation, warranties of title, merchantability, fitness for a particular purpose,
noninfringement, or the absence of latent or other defects, accuracy, or the presence of absence of errors,
whether or not discoverable.

Except to the extent required by applicable law, in no event will the author be liable to you on any legal
theory for any special, incidental, consequential, punitive or exemplary damages arising out of the use of
the work, even if the author has been advised of the possibility of such damages.

Contact beej@beej.us for more information.

1.8 Dedication
Thanks to everyone who has helped in the past and future with me getting this guide written. And thank
you to all the people who produce the Free software and packages that I use to make the Guide: GNU,
Linux, Slackware, vim, Python, Inkscape, pandoc, many others. And finally a big thank-you to the literally
thousands of you who have written in with suggestions for improvements and words of encouragement.

I dedicate this guide to some of my biggest heroes and inspirators in the world of computers: Donald
Knuth, Bruce Schneier, W. Richard Stevens, and The Woz, my Readership, and the entire Free and Open
Source Software Community.

1.9 Publishing Information
This book is written in Markdown using the vim editor on an Arch Linux box loaded with GNU tools.
The cover “art” and diagrams are produced with Inkscape. The Markdown is converted to HTML and
LaTex/PDF by Python, Pandoc and XeLaTeX, using Liberation fonts. The toolchain is composed of 100%
Free and Open Source Software.

mailto:beej@beej.us

Chapter 2

What is Programming, Anyway?

2.1 Objectives
• Be able to explain what a programmer does
• Be able to explain what a program is
• Be able to summarize the four big steps in solving problems

2.2 More Terminology Than You Wanted
Let’s say you’re entirely new to this stuff. You have a computer, you know how to use it, but you don’t
know how to make it do exactly what you want it to.

It’s the difference between a user and a programmer, right?

But what does it mean to program a computer?

In a nutshell, you have a goal (what you want to compute), and programming is the way you get there.

A program is a description of a series of steps to complete that computation, blah blah blah…

Okay—instead think of a sequence of steps that you have to do to do anything. Like baking cookies for
example.

Fun Computing Fact: everyone likes yummy cookies.

You often have that sequence of steps, that recipe, written down on a piece of paper. By itself, it’s definitely
not cookies. But when you apply a number of kitchen implements and ingredients and an oven to it, pretty
soon you have some cookies.

Of course, in that case, you have to do the work. With programming, the computer does the work for you.
But you have to write down the recipe.

The recipe is the program. Programming is the act of writing down that recipe so the computer can execute
it. And get those cookies baked.

Mmmm. Cookies.

Some programs are simple. “Add up these 12 numbers” is an example. It’s a breeze for the computer to
do that.

But others are more complicated. They can extend into millions of lines long, or even tens of millions,
written by large teams over many years. Think triple-A video game titles or the Linux operating system.

When you’re first starting, large programs like that seem impossible. But here’s the secret: each of those
large programs is made up of smaller, well-designed building blocks. And each of those building blocks
is made up of smaller of the same.

And when you start learning to be a programmer, you start with the smallest, most basic blocks, and you
build up from there.

4

Chapter 2. What is Programming, Anyway? 5

And you keep building! Writing software is a lifelong learning process. There are always new things to
learn, new technologies, new languages, new techniques. It’s a craft to be developed and perfected over
a lifetime. Sure, at first you won’t have that many tools in your toolkit. But every moment you spend
working on software gives you more experience solving problems and gives you more methods to attack
them.

2.3 What’s This Talk About Problem Solving?
In other words, I know what I want to see… how do I get there with the tools I know?

There’s a great scene in the movie Apollo 131 that I love. The CO2 scrubbers on the command module
are spent, and the team wants to use the scrubbers from the lunar module to replace them. But the former
are round, and the latter are square and won’t fit. Of course, the spacecraft has limited resources to repair
it—just miscellaneous stuff on board that was meant for the mission.

On the ground, the team has all those items at hand, and they dump them on a table. A staff member holds
up a square scrubber and a round scrubber and tells everyone, “We gotta find a way to make this fit into
the hole for this.” He then gestures toward the table, adding, “Using nothing but that.”

And that’s what programming is like, except, obviously and fortunately no lives are at stake. (Typically.)

You have a limited set of programming techniques at your disposal, and you have the goal that you want
to achieve. How can you get to that goal using only those tools? It’s a puzzle!

2.4 So How To Solve It?
Fun Programming Fact: Most devs have no idea how to solve a problem when they’re first pre-
sented with it. They have to systematically attack it.

Programmers fully intend to use a well-reasoned approach to solving arbitrary problems. In reality, they
often run off in high spirits and dive right into coding before they’ve done some of the very important
preliminary work, but since they love programming so much they don’t seem to mind wasting time.

(And it’s not a waste of time because every second you’re programming, you’re learning!)

But lots of bosses do consider unplanned development to be a waste of time. Time is also known as
“money” to the company that hired you. And the only thing more precious to a company than money is
more money.

Imagine that you said, “I want to build an airplane!” and ran off an bought a pile of tools and metal and
rivets and levers and started bolting it together immediately. You might find after a while that, oh you
should have figured out how big the engine was before you built the fuselage, but, hey, no problem, you
have time. You can just rebuild the fuselage. So you do. But now the canopy doesn’t fit. So you have to
rebuild it again, and so on.

You could have saved a lot of time by actually planning what you were going to do before you started
building.

It’s the same with software.

Fun Programming Proverb: Hours of debugging can save you minutes of planning.

There are several problem-solving frameworks out there. These are blueprints for how to approach a
programming problem and solve it, even if you have no idea how to solve it when you first see it.

One of my favorite problem-solving frameworks was popularized bymathematician George Pólya in 1945
in his book How To Solve It. It was originally written for solving math problems, but it’s surprisingly
effective at solving just about anything. The Four Main Steps are:

1. Understanding the Problem. Get clarity on all parts of the problem. Break it down into subprob-
lems, and break those subproblems down. If you don’t understand the problem, any solutions you

1https://www.youtube.com/watch?v=ry55–J4_VQ

https://www.youtube.com/watch?v=ry55--J4_VQ

Chapter 2. What is Programming, Anyway? 6

come up with will be solving the wrong problem! You know you understand the problem when you
can explain it to someone completely.

2. Devising a Plan. How are you going to attack this with the tools you have at your disposal and the
techniques you know? You know you’re done making a plan when you’re able to easily convert
your plan into code.

Often when planning you realize there’s something about the problem you don’t fully understand.
Just for a bit, pop back to Step 1 until it’s clear, then come back to planning.

3. Carrying out the plan Convert your plan into code and get it working.

Often in this phase, you find that there was either something you didn’t understand or something
the plan didn’t account for. Drop back a step or two until it’s resolved, then come back here.

4. Looking Back. Look back on the code you got working, and consider what went right and what
went wrong. What would you do differently next time? What techniques did you learn while writing
the code? Was there any place you could have structured things better, or anyplace you could have
removed redundant code?

What’s neat about this is that developers apply the steps of problem-solving to the entire program, and they
also apply it to the smaller problems within the program. A big computing problem is always composed
of many subproblems! The problem-solving framework is used within the problem-solving framework!

An example of a real-life problem might be “build a house”. But that’s made up of subproblems, like
“build a foundation” and “frame the walls” and “add a roof”. And those are made up of subproblems, like
“grade the lot” and “pour concrete”.

In programming, we break down problems into smaller and smaller subproblems until we know how to
solve them with the techniques we know. And if we don’t know a technique to solve it, we go and learn
one!

Being a developer is the same as being a problem solver. The problems ain’t easy, but that’s why it pays
the big bucks.

So you should expect that any time you see a programming problem in this book, on a programming
challenge website, at school, or work, that the answer will not be obvious. You’re going to have to work
hard and spend a lot of time to get through the first problem-solving steps before you’ll even be ready to
start coding.

2.5 What is Python?
Python is a programming language. This means it’s vaguely readable by humans, and completely readable
by a machine. (As long as you don’t make the tiniest mistake!) This is a good combination, since people
are bad at reading the actual 1011010100110 code that machines use. We use these higher-level languages
to help us get by.

In this case, another piece of software called the Python interpreter takes the code we write in the Python
language and runs it, performing the operations we’ve requested.

So before we begin, we need to install the Python interpreter. This is one of the most annoyingly painful
parts of the whole book, but luckily it only has to be done once.

Okay, gang! Let’s get it… over with!

…I really need to work on the end of that inspirational speech.

2.6 Summary
• A programmer is a problem solver. They then write programs that implement a solution to that
problem.

• A program is a series of instructions that can be carried out by a computer to solve the problem.
• The main problem-solving steps are: Understand the Problem, Devise a Plan, Carry out the Plan,
Look Back.

Chapter 3

What software will I need?

3.1 Objectives
• Install Python, and explain what it does
• Learn what an Integrated Development Environment (IDE) is.

3.2 What Is All This?
Python is a programming language. It interprets instructions that you, the programmer, give it, and it
executes them. Think of it like a robot you can give a series of commands to ahead of time, and then have
it run off and do them on its own.

In programmer parlance, we call these sets of instructions code.

In addition to being a programming language, Python is also a program, itself! It’s a program that runs
other programs! We don’t have to worry about the details of that at all, except that since Python is a
program, it’s something we’ll have to install on our computers.

Python comes in different versions. The big versions are 2 and 3. We’ll be using Python 3 for
everything in this book. Python 2 is older, and is rarely used in new projects.

Python also comes with an Integrated Development Environment, or IDE. An IDE is a program that helps
you write, run, and debug (remove the errors from) code.

It’s main components are:

• The editor. This is like a word processor except specifically designed for use with code.

• The debugger. This helps you step through your code a line at a time and watch the data values
change as you go. It can help you find places where your code is incorrect.

• The console or terminal. This is a window where the output from your program appears (and where
you might type input to the program).

The name of Python’s built-in IDE is IDLE. There are other IDEs we’ll talk about later.

3.3 Installing Python

3.3.1 Windows
There are two ways to do this:

• Install from the Microsoft Store
• Install from the official website

7

Chapter 3. What software will I need? 8

I can’t see any disadvantage to installing it from the store. Just remember to install Python 3 (not Python
2).

If you install it from the official website1, you need to remember to check the “Add to PATH” box during
the install procedure!

Another option to installing Python on Windows is through WSL. We’ll cover this later.

3.3.2 Mac
Download and install Python for Mac from the official website2.

Another option to installing Python on Mac is through Homebrew. We’ll cover this later.

3.3.3 Linux/Unix-likes
The Linux community tends to be pretty supportive of people looking to install things. Google for some-
thing like ubuntu install python3, replacing ubuntu with the name of your distribution.

3.4 Running IDLE
Here’s where we get to run the IDE for the first time. First we’ll look at how to do it on various platforms,
and then we’ll run some Python code in it.

Running IDLE depends on the platform:

Platform Commands

Windows Hit the Start menu and type “idle”. It should show up in the pick list and you can click to
open it.

Mac Hit CMD-SPACE and type “idle”. It should show up in the pick list and you can click to
open it.

Unix-like Type idle in the terminal or find it in your desktop pulldown menu.

If you run idle on the command line and it says something about the command not being found, try
running idle3.

If you get an error on the command line that looks like this:

** IDLE can't import Tkinter.
Your Python may not be configured for Tk. **

you’ll have to install the Tk graphical toolkit. This might be a package called tk or maybe python-tk.
If you’re on a Unix-like, search for how to install on your system. On a Mac with Homebrew, you can
brew install python-tk.

If you get another error, cut and paste that error into your favorite search engine to see what other people
say about how to solve it.

Once IDLE is up, you should see a window that looks vaguely like this:

3.5 Your First Command
In the IDLE window after the >>> prompt, type:

print("Hello, world!")

1https://www.python.org/downloads/
2https://www.python.org/downloads/

https://www.python.org/downloads/
https://www.python.org/downloads/

Chapter 3. What software will I need? 9

Figure 3.1: IDLE Window

and hit RETURN. This commands Python to output the words “Hello, world!”.

>>> print("Hello, world!")
Hello, world!

And it did!

This is just the beginning!

3.6 Summary
• The integrated development environment (IDE) has an editor, a debugger, and a terminal window.
• The code editor in the IDE is where you’ll be typing your programs.
• The programs, also known as code, are a series of instructions that Python will execute.
• Python is a program that will run your Python programs!

Chapter 4

How do I write a program?

4.1 Objectives
• Edit some source code in the IDLE editor.
• Run that program.

4.2 The Problem That Needs Solving
Let’s use our problem-solving framework!

1. Understand the Problem: We want to write a program that prints a neat little message to the screen.

2. Devise a plan

1. Run IDLE.
2. Open a new file from the File pulldown.
3. Write code and save it to that file.
4. Run your program from within the IDE.

3. Carry out the Plan: This is where we execute our plan. We’ll do that in the following sections.

4. Look Back: We’ll do this, below, as well. In future chapters, we’ll leave these last two off the
number list and just do them in subsequent sections.

Let’s go!

4.3 Launching your IDE and Opening a File
Run IDLE as discussed in the previous chapter.

Once in there, we’re going to make a new file.

It used to be that everyone who used computers knew what a file was. But these days, many people
use computers for years without encountering the concept.

So! A file is a collection of data with a name. Examples of files would be images, movies, PDF
documents, music files, and so on.

The name indicates something about the contents of the file. Generally. It really can be anything,
but that would be misleading, like labeling a box of raisins as “Chocolate”.

The name is split into two parts, commonly, separated by a period. The first part is the name, and
the second part is the extension. Confusingly sometimes people refer to the name and extension
together as the “name”, so you’ll have to rely on context.

Sometimes, depending on the system, the extension is optional.

10

Chapter 4. How do I write a program? 11

As an example, here’s a complete file name and extension:

hello.py

There we have a file named hello and an extension .py. This is a common extension that means
“this is a Python source code file”.

Pull down “File→New” and that’ll bring up a blank window.

And let’s enter some code!

Type the following1 into the editor (the line numbers, below, are for reference only and shouldn’t be typed
in):

1 print("Hello, world!")
2 print("My name's Beej and this is (possibly) my first program!")

We’re (almost) ready to run!

4.4 Running the Program!
Hit F5 from the editor window (you might have to hit fn-F5 on the Mac) to run the code. Alternately,
you can pull down the “Run” menu and select “Run Module”.

If you haven’t saved the file, it will prompt you to save the file. (You can pull down “File→Save”, or hit
COMMAND-S or CTRL-S to do this preemptively.)

Give it a good name, like hello.py.

And then, in the console window, you’ll see the output appear! [Angelic Chorus!]

Hello, world!
My name's Beej and this is (possibly) my first program!

Did you miss it? Hit F5 again and you’ll see it appear again.

You just wrote some instructions and the computer carried it out!

Next up: write a Quake III clone!

Okay, so maybe there might be a small number of in between things that I skimmed over, but, as Obi-Wan
Kenobi once said, “You’ve taken your first step into a larger world.”

4.5 Exercises
Remember to use the four problem-solving steps to solve these problems: understand the problem, devise
a plan, carry it out, look back to see what you could have done better.

1. Make another program called dijkstra.py that prints out your three favorite Edsger Dijkstra
quotes2.

4.6 Summary
• Use the problem solving framework!
• Edit some source code in the IDLE editor.
• Run that program from within IDLE.

1https://beej.us/guide/bgpython/source/examples/hello.py
2https://en.wikiquote.org/wiki/Edsger_W._Dijkstra

https://beej.us/guide/bgpython/source/examples/hello.py
https://en.wikiquote.org/wiki/Edsger_W._Dijkstra
https://en.wikiquote.org/wiki/Edsger_W._Dijkstra

Chapter 5

Data and Processing Data

5.1 Objective
• Understand what data is and how it is used
• Understand what variables are and how they are used
• Utilize variables to store information
• Print the value of variables on the screen
• Do basic math
• Store input from the keyboard in variables
• Learn about integer versus string data types
• Convert between data types
• Write a program that inputs two values and prints the sum

For this chapter, we want to write a program that reads two numbers from the keyboard and prints
out the sum of the two numbers.

5.2 Data, Variables, and Math
Problem-solving step: Understanding the Problem.

Data is the general termwe use to describe information stored in the computer. In the case of programming,
we’re interested in values that we’ll do things with. Like add together. Or turn into a video game.

Really, data is information. Can you glean information from a symbol? Then it’s data. Sometimes it’s a
symbol like “8”, or maybe a string of symbols like “cat”.

Your goal as a software developer is to write programs that manipulate data. You have to manipulate the
input data in such a way that the desired output is achieved. And you have to solve the problem of how
to do that.

In a program, data is commonly stored in what we call variables. If you’ve taken any algebra, you are
familiar with a letter that holds the place of a value, such as the “slope-intercept” form of the equation of
a line:

𝑦 = 𝑚𝑥 + 𝑏
or of a parabola:

𝑦 = 𝑥2

But beware! In programming code, variables don’t behave like mathematical equations. Similar, but
different.

Enter the following code in a new program in your editor, save it, and give it a run. (This is just like
you did with the program in the earlier chapter. You can name this one anything you’d like. If you need

12

Chapter 5. Data and Processing Data 13

inspiration, vartest.py1 seems good to me.)

1 x = 34 # Variable x is assigned value 34
2 print(x)
3 x = 90 # Variable x is assigned value 90
4 print(x)

In Python, variables refer to values2. We’re saying on line 1 of the code, above, “The variable x refers to
the value 34.” Another way to think of this that might be more congruent with other languages is that x
is a bucket that you can put a value in.

Then Python moves to the next line of code and runs it, printing 34 to the screen. And then on line 3, we
put something different in that bucket. We store 90 in x. The 34 is gone–this type of bucket only holds
one thing3.

So the output will be:

34
90

You can see how the variable x can be used and reused to store different values.

We’re using x and y for variable names, but they can be made up of any letter or group of letters,
or digits, and can also include underscores (_). The only rule is they can’t start with a digit!

These are all valid variable names (and, of course, you can make up any name you want!):

y
a1b2
foo
Bar
FOOBAZ12
Goats_Rock

You can also do basic math on numeric variables. Add to the code above:

1 x = 34 # Variable x is assigned value 34
2 print(x)
3 x = 90 # Variable x is assigned value 90
4 print(x)
5

6 y = x + 40 # y is assigned x + 40 which is 90 + 40, or 130
7 print(x) # Still 90! Nothing changed here
8 print(y) # Prints "130"

On line 6, we introduced a new variable, y, and gave it the value of “whatever x’s value is plus 40”.

What are all these # marks in the file? We call those hash marks, and in the case of Python, they
mean the rest of the line is a comment and will be ignored by the Python interpreter.

One last important point about variables: when you do an assignment like we did, above, on line 6:

y = x + 40 # y is assigned 130

When you do this, y refers to the value 130 even if x changes later. The assignment happens once, when
that line is executed, with the value in x at that snapshot in time, and that’s it.

1https://beej.us/guide/bgpython/source/examples/vartest.py
2More generally speaking, variables refer to objects, but since all we have for now is numeric values, let’s just go with values.
3Later we’ll learn that other types of buckets can hold more than one thing.

https://beej.us/guide/bgpython/source/examples/vartest.py

Chapter 5. Data and Processing Data 14

Let’s expand the example farther to demonstrate:

1 x = 34 # Variable x is assigned value 34
2 print(x)
3 x = 90 # Variable x is assigned value 90
4 print(x)
5

6 y = x + 40 # y is assigned x + 40 which is 90 + 40, or 130
7 print(x) # Still 90! Nothing changed here
8 print(y) # Prints "130"
9

10 x = 1000
11 print(y) # Still 130!

Even though we had y = x + 40 higher up in the code, x was 90 at the time that code executed, and y is
set to 130 until we assign into it again. Changing x to 1000 did not magically change y to 1040.

Fun Tax Fact: The 1040a is nearly my least-favorite tax form.
ahttps://en.wikipedia.org/wiki/Form_1040

For more math fun, you have the following operators at your disposal (there are more, but this is enough
to start):

Function Operator

Add +
Subtract -
Multiply *
Divide /

Integer Divide4 //
Exponent **

You can also use parentheses similar to how you do in algebra to force part of an expression to evaluate
first. Normal mathematical order of operations rules apply5.

8 + 4 / 2 # 8 + 4 / 2 == 8 + 2 == 10
(8 + 4) / 2 # (8 + 4) / 2 == 12 / 2 == 6

And you thought all that algebra wouldn’t be useful… pshaw!

There’s a common pattern in programming where you want to, say, add 5 to a variable. Whatever value it
has now, we want to make it 5 more than that.

We can do this like so:

x = 10

x = x + 5 # x = 10 + 5 = 15

This pattern is so common, there’s a piece of shorthand6 that we can use instead.

These two lines are identical:

x = x + 10
x += 10

4Integer division truncates the part of the number after the decimal point.
5https://en.wikipedia.org/wiki/Order_of_operations
6We call shorthand like this syntactic sugar because it makes things that much sweeter for the developers.

https://en.wikipedia.org/wiki/Form_1040
https://en.wikipedia.org/wiki/Order_of_operations

Chapter 5. Data and Processing Data 15

As are these:

x = x / 10
x /= 10

Here are a few of the arithmetic assignment expressions available in Python:

Operator Meaning Usage

+= Add and assign x += y
-= Subtract and assign x -= y
*= Multiply and assign x *= y
/= Divide and assign x /= y
%= Modulo and assign x %= y

These are very frequently used by devs. If you have x = x + 2, use x += 2, instead!

5.3 Assigning from One Variable to Another
Let’s check out this code:

x = 1000
y = x

Something interesting happens here that I want you to make note of. It’s not going to be super useful right
now, but it will be later when we get to more intermediate types of data.

When you do this, both x and y refer to the same 1000.

That’s a weird sentence.

But think of it this way. Somewhere in the computer memory is the value 1000. And both x and y refer
to that single value.

If you do this:

x = 1000
y = 1000

Now there are two 1000 values. x points to one, and y points to the other.

Finally, adding on to the original example:

x = 1000
y = x
y = 1000

What happens there is that first there is one 1000, and x refers to it.

Then we assign x into y, and now both x and y refer to the same 1000.

But then we assign a different 1000 to y, so now there are two 1000s, referred to by x and y, respectively.

(The details of this are rather more nuanced than I’ve mentioned here. See Appendix C if you’re crazy
enough.)

Takeaway: variables are just names for items in memory. You can assign from one variable to another
and have them both point to the same item.

We’re just putting that in your brain early so that we can revive it later.

Chapter 5. Data and Processing Data 16

5.4 Your Mental Model of Computation
Problem-solving step: Understanding the Problem.

This is a biggie, so listen up for it.

When you’re programming, it’s important to keep a mental model of what should happen when this pro-
gram runs.

Let’s take our example from before. Step through it in your head, one line at a time. Keep track of the
state of the system as you go:

1 x = 34 # Variable x is assigned value 34
2 print(x)
3 x = 90 # Variable x is assigned value 90
4 print(x)

Before we begin, x has no value. So represent that in your head as “x has no value; it’s invalid”.

Then the first line runs.

x is now 34.

Then the second line runs.

x is still 34, and we print it out. (So 34 is printed.)

Then the third line runs.

x is no longer 34. It is now 90. 34 is gone.

Then the fourth line runs.

x is still 90, and 90 gets printed out.

Then we’re out of code, so the program exits. And we have “34” and “90” on the screen from when they
were printed.

That’s keeping a mental model of computation.

This is the key to being able to debug. When your mental computing model shows different results than
the actual program run, you have a bug somewhere. You have to dig through your code to find the first
place your mental model and the actual program run diverge. That’s where your bug is.

5.5 User Input
Problem-solving step: Understanding the Problem.

We want to get input from the user and store it in a variable so that we can do things with it.

Remember that our goal in this chapter is to write a program that inputs two values from the user on the
keyboard and prints the sum of those values.

Python comes with a built-in function that allows us to get user input. It’s called, not coincidentally,
input().

But wait—what is a function?

A function is a chunk of code that does something for you when you call it (that is when you ask it to).
Functions accept arguments that you can pass in to cause the function to modify its behavior. Additionally,
functions return a value that you can get back from the function after it’s done its work.

So here we have the input() function7, which reads from the keyboard when you call it. As an argument,
you can pass in a prompt to show the user when they are ready to type something in. And it returns
whatever the user typed in.

7input() is what we call a built-in in Python. It comes with the language and we get to make use of it. Later we’ll learn to write
our own functions from scratch!

Chapter 5. Data and Processing Data 17

What do we do with that return value? We can store it in a variable! Let’s try!

Here’s another program, inputtest.py8:

1 # Take whatever `input()` returns and store it in `value`:
2

3 value = input("Enter a value: ")
4 print("You entered", value)

We can run it like this:

$ python3 inputtest.py
Enter a value: 3490
You entered 3490

Check it out! We entered the value 3490, stored it in the variable value, and then printed it back out!
We’re getting there!

But you can also call it like this:

$ python3 inputtest.py
Enter a value: Goats rock!
You entered Goats rock!

Hmmm. That’s not a number. But it worked anyway! So are we all good to go?

Yes… and no. We’re about to discover something very important about data.

5.6 Data Types
Problem-solving step: Understanding the Problem.

We started with numbers, earlier. That was pretty straightforward. The variable was assigned a value and
then we could do math on it.

But then we saw in the previous section that input() was returning whatever we typed in, including
Goats rock! which is certainly not any number I’ve ever heard of.

And, no, it’s not a number, indeed. It’s a sequence of characters, which we call a string. A string is
something like a word, or a sentence, for example.

Wait… there’s another type of data besides numbers? Yes! Lots of types of data! We call them data types.

Python associates a type with every variable. This means it keeps track of whether a variable holds an
integer, a floating point9 number or a string of characters.

Here are some examples and their associated types. When you store one of these values in a variable, the
variable remembers the type of data stored within it.

Example Data Type in English Type name in Python

2 Integer int
3490 Integer int
-45 Integer int
0 Integer int
3.14159 Floating Point float
-13.8 Floating Point float
0.0 Floating Point float
"Hello!" String str

8https://beej.us/guide/bgpython/source/examples/inputtest.py
9This is the way most computers represent numbers with a decimal point in them, such as 3.14159265358979. When you

see “floating point” or “float”, think “number with a decimal point in it” as opposed to “integer”.

https://beej.us/guide/bgpython/source/examples/inputtest.py

Chapter 5. Data and Processing Data 18

Example Data Type in English Type name in Python

"3490" String str
"" String (empty) str

In the examples, above, strings are declared using double quotes ("), but they can also be done with single
quotes, as long as the quotes match on both ends:

"Hello!" # is the same as 'Hello!'
'Hello!' # is the same as "Hello!"

Okay, that’s all fine. But is input() returning a string or a number? We saw both happen when we tried
it out, right?

Actually, turns out, input() always returns a string. Period. Even if that’s a string of numbers. Note that
these things are not the same:

3490 # int, a numeric value we can do math with
"3490" # string, a sequence of characters

Sure, they look kinda the same, but they aren’t the same because they have different types. You can do
arithmetic on an int, but not on a string.

Well, that’s just great. The task for this chapter is to get two numbers from the keyboard and add them
together, but the input() function only returns strings, and we can’t add strings together numerically!

How can we solve this problem?

5.7 Converting Between Data Types
Problem-solving step: Understanding the Problem.

If we can’t add strings mathematically, can we convert the string "3490" into the integer 3490 and then
do math on that?

Yes!

In fact, we can convert back and forth between all kinds of data types! Watch us convert a string to a
number and store it in a variable:

a = "3490" # a is a string "3490"
b = int(a) # b is an integer 3490!

print(b + 5) # 3495

How did that work? We called the built-in int() function and passed it a string "3490". int() did all
the hard work and converted that string to an integer and returned it. We then stored the returned value in
b. And finally, we printed the value of b+5 just to show that we could do math on it.

Perfect!

Here are some of the conversion functions available to you in Python:

Function Effect

int() Convert argument to an integer and return it
float() Convert argument to a floating-point number and return it
str() Convert argument to a string and return it

So… given all that we know so far, how can we solve this chapter’s problem: input two numbers from
the keyboard and print the sum?

Chapter 5. Data and Processing Data 19

5.8 Input Two Numbers and Print the Sum
Problem-solving step: Devising a Plan.

We know:

• How to input strings from the keyboard
• How to convert strings to numbers
• How to add numbers together
• How to print things out

Now—how do we put all that together to write a program that inputs two numbers from the keyboard and
prints their sum?

This is theDevising a Plan portion of problem-solving. We’re not going to write code to make this happen.
We’re just going to write an outline of the individual steps the program must describe in a language called
pseudocode (which is English that looks kinda like code).

Then when we’re satisfied it’ll work, we can code it up for realsies.

So stop here and take a moment to consider what the step by step might be to get this done.

Really, take a moment, because I’m about to give spoilers. Thinking about how to solve problems is 80%
of what a software developer gets paid to do, so you might as well practice right now.

What do we know? What tools do we have at our disposal? What resources? How do I put all those
together to solve this problem, like solving a puzzle?

Here’s some pseudocode that would get the job done, it looks like:

read string from keyboard into variable x
convert x to int and store it back in x again
read string from keyboard into variable y
convert y to int and store it back in y again
print the sum of x + y

If we’re satisfied that our plan is solid, it’s time to move to the next phase.

Problem-solving step: Carrying out the Plan.

Now let’s convert each of those lines to real Python. I’ll throw in the pseudocode as comments so we can
see how they compare. (Source code link10.)

1 # Read string from keyboard into variable x
2 x = input("Enter a number: ")
3

4 # Convert x to int and store it back in x again
5 x = int(x)
6

7 # Read string from keyboard into variable y
8 y = input("Enter another number: ")
9

10 # Convert y to int and store it back in y again
11 y = int(y)
12

13 # Print the sum of x + y
14 print("The sum of the two numbers is:", x + y)

Save that file as twosum.py and run it:

10https://beej.us/guide/bgpython/source/examples/twosum.py

https://beej.us/guide/bgpython/source/examples/twosum.py

Chapter 5. Data and Processing Data 20

$ python3 twosum.py
Enter a number: 9
Enter another number: 8
The sum of the two numbers is: 17

Too easy! Let’s challenge it:

$ python3 twosum.py
Enter a number: 235896423496865928659832536289
Enter another number: 94673984675289643982463929238
The sum of the two numbers is: 330570408172155572642296465527

Not even breaking a sweat!

Nice. Now, I want you to think like a villain. What would a villain pass into our program for input that
would cause it to break?

• Negative numbers?
• Zero?
• Decimal numbers?
• Non-numbers, like “goat”?

Try all those things with your program. What happens when you try it? Which ones work and which ones
don’t?

Notice that a big, spewing error message is really the worst case scenario here. And it’s not really that
painful. Don’t be afraid to try to break your code. The computer can handle it. Just run it again.

Later, we’ll learn techniques to catch errors like this so that the program doesn’t bomb out, and prints a
nice message to the user to please try again with valid input, thank you very much.

Notice that when the program crashes, buried in all that output, is the line number the program
crashed on! Very, very useful! And the last line tells you exactly what Python thinks went wrong.

The point is, if you’re not sure how something will work, just try it. Experiment! Break things! Fix
things! Again, the computer can absolutely handle it. It’s just a big sandbox for you to play in.

5.9 Wrapping it Up
Problem-solving step: Looking Back.

This grimly-named step is where we take a look at our code and decide if there was a better way to attack
this problem. It’s important to remember that coding is a creative endeavor. There are many ways to
solve the same problem.

Admittedly, right now, you don’t have many tools in the toolkit, so your creativity is limited. But eventu-
ally, in the not-too-distant future, you’ll know several ways to solve a problem, and you’ll have to weigh
the pros and cons of each, and be creative and choose one!

What could be better?

• We saw earlier that passing in floating point numbers (with a decimal point) bombed out. It would
be nice if the program would add both floating-point.

What else could we do?

• What about other math operations?

Chapter 5. Data and Processing Data 21

5.10 Exercises
“You know how to get to Carnegie Hall?”

“Practice!”

Zeus says, “This book assumes you complete all of the exercises!” and when Zeus speaks, people really
should listen.

I know, I know. You get to the exercises part of a book and you just skip ahead. I mean, it’s not like I’m
grading you or anything.

But there’s only one way to get to be a better dev: practice and repetition. Going through this book without
doing the exercises is like training for a marathon by reading about how to run. It’s simply not going to
get you there on its own.

Resist the urge to look at the solution until you’ve solved it! Give yourself a time limit. “If I haven’t
solved this in 20minutes, I can look at the solution.” That 20minute isn’t wasted—it’s invaluable problem-
solving practice time. During that time, you’re building a scaffold in your brain that can hold the solution
once you see it.

If you just skip straight to the solution, look at it, and say, “Yup, makes sense, I got it,” you’re missing out
on all that benefit.

Don’t shortchange yourself! Do the exercises! The more you do, the better dev you’ll be! I’m getting off
my soapbox now!

Remember to use the four problem-solving steps to solve these problems: understand the problem, devise
a plan, carry it out, look back to see what you could have done better.

Here they are:

1. Make a version of the two number sum code that works with floats instead of ints. Do the
numbers always add correctly, or are they sometimes just a little bit off? Lesson: floating point
math isn’t always exact. Sometimes it’s off by a tiny fraction. (Solution11.)

2. Have the program print out the sum and the difference between two numbers. (Solution12.)

3. Allow the user to enter 3 numbers and perform the math on those. (Solution13.)

4. Write a program that allows the user to enter a value for 𝑥, and then computes and prints 𝑥2. Re-
member ** is the exponentiation operator in Python. 3**2 is 9. (Solution14.)

5. Write a program that allows the user to enter a, b, and c, and the solves the quadratic formula15 for
those values.

A refresher: with equations of the form:

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0
you can solve for 𝑥 with the quadratic formula:

𝑥 = − 𝑏 ±
√
𝑏2 − 4𝑎𝑐

2𝑎
This all looks terrifying! Can you feel your brain seizing up over it? Deer in the headlights? That’s
OK. This is how developers feel when confronted with a new problem. Really! All of us! But what
we know is that we have a problem solving framework we can use to attack this problem regardless
of how difficult it seems initially.

Remember: Understand, Plan, then Code It Up.

Take a deep breath. Shake off the fear!
11https://beej.us/guide/bgpython/source/examples/ex_twosumfloat.py
12https://beej.us/guide/bgpython/source/examples/ex_twosumdiff.py
13https://beej.us/guide/bgpython/source/examples/ex_threesumdiff.py
14https://beej.us/guide/bgpython/source/examples/ex_xsquared.py
15https://en.wikipedia.org/wiki/Quadratic_formula

https://beej.us/guide/bgpython/source/examples/ex_twosumfloat.py
https://beej.us/guide/bgpython/source/examples/ex_twosumdiff.py
https://beej.us/guide/bgpython/source/examples/ex_threesumdiff.py
https://beej.us/guide/bgpython/source/examples/ex_xsquared.py
https://en.wikipedia.org/wiki/Quadratic_formula

Chapter 5. Data and Processing Data 22

You can absolutely do this. It’s not any harder than anything so far! Let’s go!

Your program should plug a, b, and c into the above formula and print out the result value in x.

Make sure 𝑏2 ≥ 4𝑎𝑐 or there won’t be a solution and you’ll get a “domain error” when you
try to take the square root of a negative number. Some test values for 𝑎, 𝑏, and 𝑐 that work:
5, 9, 3, or 20, 140, 60.

What is that± symbol after−𝑏 in the equation? That’s “plus or minus”. It means there are actually
two equations, one with + and one with −:

𝑥𝑝𝑙𝑢𝑠 = − 𝑏 +
√
𝑏2 − 4𝑎𝑐

2𝑎 𝑥𝑚𝑖𝑛𝑢𝑠 = − 𝑏 −
√
𝑏2 − 4𝑎𝑐

2𝑎
Solve them both and print out both answers for a given 𝑎, 𝑏, and 𝑐.
What about that square root of 𝑏2 − 4𝑎𝑐? How do you compute that? Here’s a demo program for
computing the square root of 2—use it to learn how to use the math.sqrt() function, and then
apply it to this problem.

1 import math # You need this for access to the sqrt() function
2

3 x = math.sqrt(2) # Compute sqrt(2)
4 print(x) # 1.4142135623730951

Code that up and, hey! You’ve written a program that solves quadratic equations! Take that, home-
work! (Solution16.)

6. Followup to the previous question: after computing x, go ahead and compute the value of

𝑎𝑥2 + 𝑏𝑥 + 𝑐
and print it out. (You can use either the plus solution or the minus solution—doesn’t matter since
they’re both solutions.) The result should be exactly 0. Is it? Or is it just something really close to
zero? Lesson: floating point math isn’t always exact. Sometimes it’s off by a tiny fraction.

Sometimes you might get a number back that looks like this, with a funky e-16 at the end (or
e-something):

8.881784197001252e-16

That’s a floating point number, but in scientific notation17. That e-16 is the same as ×10−16. So
the math equivalent is:

8.881784197001252 × 10−16

Now, 10−16 is actually a really, really small number. So if you see something like e-15 or e-18 at
the end of a float, think “that’s a really small number, like close to zero.”

(Solution18.)

7. Make up two more exercises and code them up.

And don’t worry–we’ll get away from the math examples soon enough. It’s just, for now, that’s about all
we know. More soon!

5.11 Summary
This chapter we covered:

• Data and variables
• Storing and printing data in variables

16https://beej.us/guide/bgpython/source/examples/ex_quadratic.py
17https://en.wikipedia.org/wiki/Scientific_notation
18https://beej.us/guide/bgpython/source/examples/ex_quadratic2.py

https://beej.us/guide/bgpython/source/examples/ex_quadratic.py
https://en.wikipedia.org/wiki/Scientific_notation
https://beej.us/guide/bgpython/source/examples/ex_quadratic2.py

Chapter 5. Data and Processing Data 23

• Doing basic math
• Getting keyboard input
• Data types, and conversions between them

• String
• Integer
• Floating Point

• Keeping the problem-solving framework in mind the whole time!

It’s a great start, but there’s plenty more to come!

Chapter 6

Flow Control and Looping

6.1 Objective
• Understand what flow control is
• Understand what a conditional is
• Be able to construct Boolean (“BOO-lee-in”) expressions
• Implement code that makes decisions with if statements
• Implement code that loops with a while loop
• Implement code that loops with a for loop and range iterator

6.2 Chapter Project Specification
For this chapter, we want to write a program that asks the user for a number between 5 and 50, inclusive.

If a number outside that range is entered, an error message is printed and the user is asked again to enter
a valid number.

Once the number is obtained, the program will print out that many # characters in a row. EXCEPT all
characters at position 31 and above should print out a *. (Characters before that position will still be a #.)

For example, an input of 10 would result in:

##########

whereas an input of 37 would result in:

##############################*******

Keep this program in mind as we learn the techniques to implement it.

6.3 What is Flow Control?
Problem-solving step: Understanding the Problem.

What is flow control? To understand, let’s look at a simple program:

1 print("Are we not drawn onward")
2 print("We few")
3 print("Drawn onward to new era?")

When this program runs, Python keeps track of the current instruction, or line, if you will.

First, Python runs the first line.

24

Chapter 6. Flow Control and Looping 25

Then it goes to the next.

Then it goes to the last.

And then it falls off the end and completes.

Kind of monotonous, right? I mean, it just brainlessly goes to the next instruction every time.

What if you want to transfer the program flow elsewhere instead of just blindly going to the next instruc-
tion?

This is where you get your first taste of what it means to be a developer. You can ask the computer to
make smart decisions based on the criteria you specify. Figuring out which criteria to specify is the job
of a programmer and where most of the hard work comes in.

Eventually, we’re going to code up things that say “If some condition is true, do one thing” or “If some
condition is false, do another thing”.

But before that, we have to meet someone: George Boole.

6.4 Boolean Algebra and Expressions
Problem-solving step: Understanding the Problem.

George Boole1 was quite an interesting character. From humble beginnings in the early 1800s, he went
on to develop the mathematics that became, in many ways, the foundation of modern computation. Pretty
awesome.

What he developed is what we call today Boolean Algebra.

Don’t worry–it’s easier than that algebra you’re thinking of. In fact, you already know it, just not formally
and not by that name.

With Boolean, we’re interested in whether or not expressions are true or false. And then we can make
decisions on whether or not they are.

Let’s do some human ones before we get into the computer stuff.

Level: Easy. Are these expressions true or false for you?

• I live in North America.
• It’s raining right now.
• Cats are superior to dogs.

Hopefully, that wasn’t particularly challenging. Let’s take it up a notch by introducing the concept of
AND. For these, the entire expression is true only if all subexpressions are true.

For example, the statement “I’m over 190 cm tall AND I’m under 30 years of age” is false. Though I am
over 190 cm tall, am I not under 30 years, so the entire expression is false.

By comparison, “I like dogs AND I like motorcycles” is true, because both of those subexpressions are
true.

And if neither of them is true, the result is also false.

Level: Intermediate. Are these expressions true or false for you?

• I live in Europe AND I’m older than 25.
• It’s raining right now AND it’s sunny right now.
• Cats are superior to dogs AND dogs are superior to cats.

All right! Let’s do a variant on AND, namely OR. With OR, the entire expression is true if either or both
of the subexpressions is true.

For example, I don’t like running, but I do like bicycling. Nevertheless, the following statement is true,
because at least one of the subexpressions is true: “I like running OR I like bicycling”. True.

1https://en.wikipedia.org/wiki/George_Boole

https://en.wikipedia.org/wiki/George_Boole

Chapter 6. Flow Control and Looping 26

This is the basis for the smarty-pants answer to the question:

“Would you like soup or salad?”

“True. I would like soup or I would like salad.”

“Get out of my restaurant, Boolean fanatic!”

Level: Intermediate. Are these expressions true or false for you?

• I live in Europe OR I’m older than 25.
• It’s raining right now OR it’s sunny right now.
• Cats are superior to dogs OR dogs are superior to cats.

All right! Now one more thing to remember: unless there are parentheses in an expression saying other-
wise, AND takes precedence over OR. That is, do the ANDs first, and then do the ORs.

Level: Advanced.

Let’s say it’s raining, I’m over 25, and this fish is big. We could evaluate this expression:

It’s sunny AND this fish is big OR I’m over 25.

We do the AND first. It’s not sunny, and the fish is big. So that’s “false AND true”, which evaluates to
“false”.

So replace that AND expression with “false”. And then we’ll do the OR:

false OR I’m over 25.

Now I am over 25, so that evaluates to “false OR true”, which is “true”.

So the entire expression is true.

And you can override with parentheses:

It’s sunny AND (this fish is big OR I’m over 25).

Do the work in parens first. So now we evaluate the OR, which evaluates to “true OR true” which is
“true”. Then we evaluate the AND, which is “It’s sunny AND true”, which is “false AND true”, which is
“false”.

So the entire expression is false.

Let’s do some examples with numeric conditional expressions. Do these evaluate to true or false?

• 1 < 5
• 5 > 1
• 1 < 5 AND 5 < 10
• 1 > 5 OR 5 < 10
• 1 < 5 AND 5 > 10 OR 10 > 20
• 1 < 5 AND (5 > 10 OR 10 > 20)

Answers:

• True
• True
• True AND True = True
• False OR True = True
• True AND False OR False = False OR False = False
• True AND (False OR False) = True AND False = False

Sometimes developers (but more usually hardware folks) describe these operations in what are called truth
tables. A truth table shows what the result of a Boolean expression will be for some given inputs.

Often these tables use 1 to represent True and 0 to represent False2.

Here are some truth tables for the operations we’ve seen so far.
2Ooooo! 1s and 0s! Binary! For just a moment, here, we’re getting a glimpse of the deep workings of the machine.

Chapter 6. Flow Control and Looping 27

A B A AND B

0 0 0
0 1 0
1 0 0
1 1 1

A B A OR B

0 0 0
0 1 1
1 0 1
1 1 1

A NOT A

0 1
1 0

Now we’re about ready to go. Let’s learn how to do this in Python.

6.5 Boolean Operations in Python
Problem-solving step: Understanding the Problem.

The comparison operators in Python are:

Operator Effect

< Less than, e.g. x < y
> Greater than, e.g. x > y
== Equal to, e.g. x == y
!= Not equal to, e.g. x != y
<= Less than or equal to, e.g. x <= y
>= Greater than or equal to, e.g. x >= y

So we can take a variable and convert it to a true or false value by comparing it to numbers or other
variables.

What is true and false in Python?

Boolean Python Keyword

True True
False False

Easy enough.

Let’s try a quick demo3:

1 print(True) # True
2 print(False) # False
3

3https://beej.us/guide/bgpython/source/examples/booltest.py

https://beej.us/guide/bgpython/source/examples/booltest.py

Chapter 6. Flow Control and Looping 28

4 x = 10
5 print(x == 10) # True
6 print(x < 5) # False
7

8 # You can store the Boolean result in a variable!
9 r = x >= 7
10 print(r) # True

Check that out! You can store the Boolean result of a comparison in a variable, like we did with r, above!

It’s important to note that True and False are not strings. They represent Boolean values.

So now, for data types, we know about strings, ints, floats, and Booleans (sometimes called bools for
short). Add that to the collection of tools we have at our disposal.

But what about our good friends AND and OR?

Boolean Python Keyword

AND and
OR or
NOT not

Pretty easy, but I threw in a NOT!What is that? It’s pretty easy: it just inverts whatever you give it. “NOT
true” is false. And “NOT false” is true.

print(not False) # Prints True

Seems mundane, but we’ll make good use of it in a minute.

6.6 The Almighty if Statement
Problem-solving step: Understanding the Problem.

It’s all well and good for Python to tell me that 1 < 5 is True, but how can we actually use that to make
choices in a program?

Let’s consider a small program that will let the user input a number and it will tell the user if the number
is between 50 and 59, inclusive.

Before coding, let’s think about how to approach it. If the number is stored in x, what would the Boolean
expression in Python be that would be True if x were between 50 and 59?

I’m talking ands and ors and nots and <s and >s… not necessarily all of them, but the ones needed.

Did you get it? Spoilers ahead!

x >= 50 and x <= 59 # True if x in that range!

Let’s take that knowledge and turn it into a complete program4 using if, and then we can take it apart in
more detail:

1 x = input("Enter a number: ")
2 x = float(x)
3

4 if x >= 50 and x <= 59:
5 print(x, "is between 50 and 59, inclusive")
6 print("Well done!")

4https://beej.us/guide/bgpython/source/examples/ifelse1.py

https://beej.us/guide/bgpython/source/examples/ifelse1.py

Chapter 6. Flow Control and Looping 29

7 else:
8 print(x, "is not between 50 and 59, inclusive")

So if x >=50 and x <= 59 is True, then we execute the block that is indented afterward.

Blocks can be indented with any combination of tabs or spaces, as long as each line in the block
begins with the same pattern of tabs or spaces. The official recommendation is to use 4 spaces for
indentation in Python.

Indented blocks in Python are one of the things most devs are pretty opinionated about in terms
of loving or hating. Personally, I say be a good dev in any language, regardless of how you feel
about their idiosyncrasies.

And then what’s this pesky else? That’s a super-handy feature of if. If the condition is False, then the
block under the else is evaluated instead. Basically, we’re saying, “If the condition is true, then do this,
otherwise do this.”

There’s one more construct we can use in the if-else family: elif. This is short for else if and is used
if you need to check multiple conditions.

1 if x < 10:
2 print("x is less than 10")
3 elif x < 20:
4 print("x is less than 20")
5 elif x < 30:
6 print("x is less than 30")
7 else:
8 print("x is greater than or equal to 30")

In that example, first we check if x is less than 10. If that’s False, the next condition is tested, and so on.
If none of them match, then we get to the else case.

The if statement is the core of what allows us to use Boolean logic to control the flow of our program.
It’s how computers can make decisions based on input. Without if, there would be no computing–that’s
how important it is!

And your job as a dev is to come up with that logic, those if statements and conditions, that cause your
program to give the proper output for a given input.

6.7 And Now: while Loops!
Problem-solving step: Understanding the Problem.

We’re going to divert ever-so-slightly, and talk about another important concept in programming: loops.
A loop is what allows us to execute the same piece of code repeatedly without repeating ourselves.

Here’s a real-life example. Let’s say you have to add some shingles to a roof. The steps to do so are to
place a shingle, nail it in place, and then move to the next spot.

Instructions for four shingles might be:

• Place a shingle
• Nail it on
• Move to the next spot
• Place a shingle
• Nail it on
• Move to the next spot
• Place a shingle
• Nail it on
• Move to the next spot
• Place a shingle

Chapter 6. Flow Control and Looping 30

• Nail it on
• Move to the next spot

But that’s irksomely verbose. It would be nicer to do something like this:

• While we haven’t yet placed 4 shingles:
• Place a shingle
• Nail it on
• Move to the next spot

That’s us looping. We’re running the same piece of code while a condition is True. At the very least, this
can save us a lot of typing!

Python has several looping statements, but for this section, we’ll concentrate on what’s called the while-
loop. It does something while a condition is true.

Here’s an example5 that counts from 1200 to 1210:

1 x = 1200
2

3 while x <= 1210:
4 print(x)
5 x += 1
6

7 print("All done!")

It repeats the body of the loop (everything that’s indented) as long as the condition x <= 1210 is True.

You see inside the body of the loop, we increment (add one to) x every iteration so that it increases toward
1210.

What would happen if we didn’t increment x? In that case, it would loop forever. We call this an infinite
loop. If your program’s running for a long time with no output (or repeating output), it might be in an
infinite loop.

How do you get out of your program if it’s caught in an infinite loop? You hit CTRL-C (AKA “break”).
That’ll get you back to your shell prompt.

Remember one of our goals for this chapter’s program is to ask the user for a number between 5 and 50.
And we need to ask them again if they enter a number outside that range. That is, we need to loop while
the user has not given us valid input. Give that some thought now, and we’ll come back to it later.

6.8 Looping: for Loops
Problem-solving step: Understanding the Problem.

In addition to while loops, we also have a beast called a for loop. These are quite powerful as we’ll
find out later, but for now, I just want to talk about looping for a certain number of times. (As opposed to
looping while a condition is true.)

Here’s an example of printing out the numbers from 0 to 9 using a for loop and a function called range().
(range() returns something called an iterator. More on iterators in upcoming chapters—for now, just
look at how they can be used with for loops.)

for i in range(10): # loop from 0 to 9
print(i)

Notice a few things:

• i is the classic variable name for a looping index.
• If you have a nested loop (a loop inside a loop—more on that later) you can use j, then k, etc.

5https://beej.us/guide/bgpython/source/examples/while.py

https://beej.us/guide/bgpython/source/examples/while.py

Chapter 6. Flow Control and Looping 31

• We loop until we get to one before the argument to range(). Up to but not including.

But wait, there’s more! range() is multi-talented! Not only can it count up from zero to almost-a-number,
but you could give it another starting point, as well:

for i in range(5, 10): # loop from 5 to 9
print(i)

Now how much would you pay? It slices, it dices! But we’re not done yet! You can also tell range()
how far to skip each step!

Let’s print out only the even numbers between 4 and 18 (that is, print from 4 to 18, stepping by 2 each
time):

for i in range(4, 20, 2): # loop from 4 to 18, skipping by 2 each time
print(i)

Question: let’s say I wanted to count down from 10 to 1 using range(). How would I do that?

for i in range(???, ???, ???):
print(i)

What do you think? Spoilers upcoming!

You can give range() a negative “step” to make it walk backward:

for i in range(10, 0, -1): # Step backward from 10 to 1
print(i)

Like before, the final value isn’t included in the results.

Python2 had an additional function called xrange(). Python3 doesn’t have that. If you’re ever
reading old Python2 code and see xrange(), know that it’s the same as range() in Python3.

Now, for does a lot more than just looping for a range, but that’s a story for another time.

6.9 When while and When for?
Problem-solving step: Understanding the Problem.

Which of these looping constructs should you use, and when?

Generally speaking, whichever one is the easiest for the problem. Or makes the easiest-to-read code.

Okay, I know that’s not much to go on.

If you want to loop a number of times that you know in advance, like 10 times, or the number stored in x
times, then use a for loop with range().

If you just want to loop until some condition is True or False, but you don’t know when that’ll be, use
a while loop.

6.10 Chapter Project
Let’s jump into that project from the beginning of the chapter. Revisit the project spec if you need a
refresher.

Problem-solving step: Devising a Plan.

Let’s break this program into two parts, and tackle them individually.

1. We want to get some valid user input in the range 5-50, inclusive.

Chapter 6. Flow Control and Looping 32

2. We want to print out some # and xs based on the input.

By breaking down the problem, we make it more approachable. We can even break down step 1 into more:

While user input isn't valid:
Ask the user for input
If input invalid, print an error message

Don’t look now, but our “plan” is looking like really good pseudocode at this point.

Let’s go ahead and code up the user input portion. We’ll do printing asterisks later.

Problem-solving step: Carrying out the Plan.

Asking the user for input, we already know.

But how dowe ask them repeatedly until they enter something valid? We need to loop! How about looping
while the input is invalid? Sure!

1 input_valid = False # Assume it's invalid to start
2

3 while not input_valid: # While not input valid ("while input invalid")
4 x = input("Enter a number, 5-50 inclusive: ")
5 x = int(x)
6

7 if x >= 5 and x <= 50:
8 input_valid = True # We got a good number!

Let’s study that pattern because it’s a common use of while.

We start by assuming that the success condition isn’t met. And then we check every iteration of the loop,
with if, to see if it is met. And we loop while the success condition is not true.

Now, we’re also supposed to print an error if the input is out of range. How? We can do it in two lines.

If the if condition is True, then we have good input. Otherwise we have bad input and should print a
message… if… else!

(Note: the code below is a continuation of the program, above. Pay attention to the line numbers!)

7 if x >= 5 and x <= 50:
8 input_valid = True # We got a good number!
9 else:
10 print("The number must be between 5 and 50, inclusive!")
11

If you haven’t already, code that up and run it. No, it’s not the complete program, but it’s the complete
first step of the program, and we can test it before moving on just to be confident that this part works.

Run it and try it with some numbers. If you enter an invalid number, it should tell you so and ask again. If
you enter a valid number, input_valid becomes True and the while loop exits (because the continuation
condition is not input_valid).

Once you’re satisfied it’s working correctly, let’s move back to the spec and concentrate on printing out
the asterisks.

Problem-solving step: Devising a Plan.

If the user enters x, we want to print out x count of characters, total. The first 30 of these will be #, and
any after that will be *.

Before we start things out, let’s use a different planning technique: simplify the problem.

Let’s forget about the * for now and just print out # characters, however many the user-specified. Later
we’ll add the code for *.

Chapter 6. Flow Control and Looping 33

Simplifying the problem allows you to more easily tackle it, and leads you to see ways to add the
missing features later.

The plan for this simplified phase isn’t that tough:

For however many numbers the user inputs:
Print a `#`.

Problem-solving step: Carrying out the Plan.

Since we know how many #s we want to print (the user entered the number!) this would be a great place
for a for loop. Let’s print those:

12 # Print the line
13 for i in range(x):
14 print("#")

Run it! How did it do?

Hmmm. Looks like it’s printing a hash on each line. The print() function puts a newline at the end of
the line. We need to override that behavior, and there’s an easy way to do it.

12 # Print the line
13 for i in range(x):
14 print("#", end="") # Set the end-of-line character to nothing
15

16 print() # Add a newline to the end of the line

We did a bit of magic there. We passed another argument to print() that told it we wanted it to put
nothing (an empty string, "") at the end of the line instead of the newline character it normally tacks on.

You could go crazy and say end="Beej" and it would put the word “Beej” after every hashmark. Do it.
Go crazy.

Getting there! But we’re not out of the woods yet. We need to make it so that for character more than 30
characters out, we print a * instead of a #.

Problem-solving step: Devising a Plan.

This is like the plan for printing the line from before, but we simplified that, remember? So we have to
add some complexity to meet the spec.

For however many numbers the user inputs:
If we're at the 30th character or earlier:

Print a `#`.
Otherwise:

Print a `*`.

And that’s looking like a good case for if inside our for loop!

Problem-solving step: Carrying out the Plan.

Let’s add that if logic to the for loop at the end:

12 # Print the line
13 for i in range(x):
14 if i < 30:
15 print("#", end="") # Set the end-of-line character to nothing
16 else:
17 print("*", end="")
18

Chapter 6. Flow Control and Looping 34

19 print() # Add a newline to the end of the line

There’s something here to note that’s subtle and important:

• If the user enters 40, the value of i runs from 0 to 39, because the body of the for loop does not
execute when i reaches its maximum value.

• But 0 to 39 is still 40 iterations, right? Just like 0,1,2,3 is a total of 4 iterations. So we’re still getting
all 40 characters even though the counter is running from 0 to 39.

• However, since the counter is running from 0, that means the highest character that will be a #
occurs when i is 29, not when i is 30. This is why we test i < 306 and not i < 31.

But there we have it!

Be sure to test with the edge cases. These are inputs that are at the edges of conditions in your program.

For example, we have conditions testing input against 5 and 50. So test with 4, 5, 50, and 51, both sides
of those conditions.

Where else do we have an edge case in the code? That right: the if when printing. The first 30 are
supposed to be # with * after that. So test with 30 and make sure it’s all #s, and then test with 31 and
make sure there’s a single *.

Testing the edge cases is an all-powerful programming technique that all devs use to great effect.

And, while you’re at it, test a bunch of other numbers to make sure it behaves as you’d expect.

Bonus Question: Can you think of another way to draw the line of characters without using an if inside
the loop? (There’s a hint at this footnote7.) Coding is creative! There’s more than one way to do these
things. Try them and see which you like better.

(Solution8.)

6.11 Exercises
Remember: to get your value out of this book, you have to do these exercises. After 20 minutes of
being stuck on a problem, you’re allowed to look at the solution.

Always use the four problem-solving steps to solve these problems: understand the problem, devise a
plan, carry it out, look back to see what you could have done better.

1. Print out the sum of the numbers from 1 to (and including) 10000. (Solution9.)

2. Print out values for x and x**4 for all x between 0 and 99, inclusive. (Solution10.)

3. Ask the user to input a number, or the word quit. If the user enters a number, print out that number
times 10. If the user enters quit, the program should complete. (Solution11.)

4. Prompt the user for two numbers. Print out all the odd numbers between and including those two
numbers. (Solution12.)

5. Print out the numbers from 1 to 100. Except if the number is divisible by 313, print Fizz instead.
If the number is divisible by 5, print Buzz instead. And if the number is divisible by 3 and divisible
by 5, print FizzBuzz14. There are a lot of ways to solve this one. (Solution15.)

6. Make up two more exercises and code them up.
6We could have also tested i <= 29.
7Have two loops!
8https://beej.us/guide/bgpython/source/examples/hashast.py
9https://beej.us/guide/bgpython/source/examples/ex_10ksum.py
10https://beej.us/guide/bgpython/source/examples/ex_xfourth.py
11https://beej.us/guide/bgpython/source/examples/ex_ntimes10.py
12https://beej.us/guide/bgpython/source/examples/ex_oddsbetween.py
13A number x is divisible by 3 if x % 3 == 0.
14This is a famous interview problem for junior devs.
15https://beej.us/guide/bgpython/source/examples/ex_fizzbuzz.py

https://beej.us/guide/bgpython/source/examples/hashast.py
https://beej.us/guide/bgpython/source/examples/ex_10ksum.py
https://beej.us/guide/bgpython/source/examples/ex_xfourth.py
https://beej.us/guide/bgpython/source/examples/ex_ntimes10.py
https://beej.us/guide/bgpython/source/examples/ex_oddsbetween.py
https://beej.us/guide/bgpython/source/examples/ex_fizzbuzz.py

Chapter 6. Flow Control and Looping 35

6.12 Summary
We covered all kinds of super-important things in this chapter.

• Flow Control
• Boolean algebra, conditional expressions, True, False
• if-else
• while loops and for loops
• A bit about testing edge cases

Guess what! You now know enough Python syntax to solve any computing problem! I’m not kidding16!

See, it’s not knowing all the syntax that’s important; it’s the ability to figure out how to put it all together
in the right way.

That said, we haven’t learned enough Python syntax to necessarily make solving every computing problem
easy. In the upcoming chapters, we’ll learn more tools that Python gives you to increase the size of your
problem-solving toolkit.

16https://en.wikipedia.org/wiki/Turing_completeness

https://en.wikipedia.org/wiki/Turing_completeness

Chapter 7

Strings

7.1 Objective
• Get a firm grip on what a string is
• Convert from other types to strings
• Concatenate strings
• Understand that strings are immutable
• Get individual characters with strings
• Slice a string
• for loop through a string
• Use basic string manipulation methods and functions
• Print strings using formatted output

7.2 Chapter Project Specification
Compute and print out a multiplication table. Allow the user to enter a number between 1 and 19, inclusive,
and then print out a times table up to that value.

For example, if the user enters 4, the output should be:

1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16

Be sure to leave enough room for the maximum number of digits you’ll need in the largest product.

7.3 What is a String?
Problem-solving step: Understanding the Problem.

A string in Python is a sequence of characters (letters, punctuation, numbers, foreign characters, etc.). You
enclose it in either single quotes (') or double quotes ("), your choice, as long as they match on either
side.

Here are some strings:

"Hello!"
"This is test #37"
"3490" # string of digits
" " # string of spaces
"" # empty string, 0 characters

36

Chapter 7. Strings 37

"Beej's String" # string with an apostrophe
'Beej says, "hi!"' # string with double quotes in it

You can also embed double quotes in double-quoted strings (or single quotes in single-quoted strings by
putting a backslash character in front of them (\) . This is called escaping the character, which means
“Hey, Python, treat this like a literal quote mark—just print a quote mark out,” as opposed to “Hey, Python,
this is the end of the string.”

'Beej\'s string' # Equivalent to the example, above
"Beej says, \"hi!\""

Strings are commonly used when:

• Printing out characters on the screen
• Reading from the keyboard with input()
• Reading/writing data from/to files (called File I/O, short for File Input/Output).
• Network I/O

7.4 Creating Strings
Problem-solving step: Understanding the Problem.

Strings are generally created one of two ways:

• by declaring a string constant
• getting a string back from a function

The former we’ve already seen. Here’s another example of a string constant:

x = "This is a constant string!"

But we’ve also already seen functions that produce strings:

y = input("Enter a string: ")

input() returns a string that gets stored in y.

But wait—there’s clearly a constant string there, as well! The prompt "Enter a string:" is a string!
Strings everywhere!

Later we’ll learn about file and network I/O and how they’re used with strings and other data types. But
for now, we’ll stick to some basics.

7.5 Converting Other Types To Strings and Vice Versa
Problem-solving step: Understanding the Problem.

We’ve already mentioned this in a previous chapter, but it’s worth covering again as a review.

You can convert a lot of other types to strings with the str() function. We’ll see how to make use of this
later.

Examples:

x = str(3490) # "3490"
y = str(3.14159) # "3.14159"
z = str("Hi!") # "Hi!" (does nothing, since "Hi!" was already a string!)

Likewise, you can convert from strings to other types, like int and floatwith those respective functions:

Chapter 7. Strings 38

x = int("3490") # Integer 3490
y = float("3.14159") # Float 3.14159

In this way, if you have a string with a number in it, you can convert it to a numeric value so that you can
perform math on it.

7.6 String Concatenation with +

Problem-solving step: Understanding the Problem.

You’re used to using + to add two numbers, but did you know you could also “add” strings? It doesn’t do
it arithmetically, but it will glue the strings together, a process known as concatenation (cən-CA-tən-ay-
shun—“cat” in the middle pronounced like the animal.) You can concatenate two strings.

x = "Hello, "
y = "world!"
z = x + y # z becomes "Hello, world!"

This is how you build smaller strings together into larger ones.

You often find the assignment-concatenation operator in use to add to the end of a string:

x = "B" # start with "B"
x += "e" # add an "e" to the end of the string
x += "e" # add an "e" to the end of the string
x += "j" # add a "j" to the end of the string
x += "!" # add an "!" to the end of the string

print(x) # Beej!

7.7 Midterm Challenge
Use what we’ve learned so far to concatenate a string "Hello" with the number 3490 (an integer, not a
string).

Problem-solving step: Devising a Plan.

OK, so let’s use + to concatenate the number onto the end of the string.

Problem-solving step: Carrying out the Plan.

x = "Hello"
y = 3490
print(x + y)

But running it, we get this output:

Traceback (most recent call last):
File "foo.py", line 3, in <module>

print(x + y)
TypeError: can only concatenate str (not "int") to str

Let’s take a close look at that. It’s telling us that on line 3 of foo.py, where we have print(x + y) we’re
getting this error:

TypeError: can only concatenate str (not "int") to str

Chapter 7. Strings 39

y is an int, but x is a str. This error is telling us that we can’t concatenate an int onto a str. What to
do now?

Problem-solving step: Devising a Plan.

Since we can’t concatenate an int to a str, can we turn the int into a str? Sure! New plan: convert
the int to a str with the str() function, and then concatenate it onto the first string with +.

Problem-solving step: Carrying out the Plan.

x = "Hello"
y = str(3490)
print(x + y) # Hello3490

Success!

Problem-solving step: Looking Back.

Any other ways to solve this? We could have done the str() call later:

x = "Hello"
y = 3490
print(x + str(y)) # Hello3490

and that would have worked just as well.

Also ponder a related problem: what if you had a string "3490" and you wanted to arithmetically add
1000 to it, and then produce a final string of "4490"? What kinds of conversions and operations would
you have to do?

7.8 Getting Individual Characters From Strings
Problem-solving step: Understanding the Problem.

What if we want to extract a single character from a string?

We can do it, but we have to introduce new notation to allow it: [and], AKA square brackets.

Let’s print out just the first two characters in a string:

x = "Beej!"

print(x[0]) # Print character in position 0, "B"
print(x[1]) # Print character in position 1, "e"
print(x[4]) # Print character in position 4, "!"

When reading this code, x[1] would be read aloud as “x sub 1”, a nod to classic mathematical notation
𝑥1. The 1 in this case is called the index into the string.

Really important: index numbers start at 0!! The first character in a string is sometimes referred to in
speech as the zeroth character and the second character is sometimes referred to as the oneth character,
and twoth, and threeth, and so on, in an attempt to avoid ambiguity. Say “The character at index 3” if you
want to be sure.

Fun Indexing Fact: every programming language in serious use today uses 0-based indexing
(that is, indexes start at 0). There are some useful mathematical implications for doing so, even if
it’s trickier to think about.

Do some experimentation here. Try getting characters past the end of the string? What happens? (We’ll
learn to mitigate this later.)

What if you try a negative index? What do you think will happen? What does happen?

Turns out if you specify a negative index in Python, it gets the character starting from the end of the string!

Chapter 7. Strings 40

x = "Beej!"

print(x[-1]) # Print 1st from the end character: "!"
print(x[-4]) # Print 4th from the end character: "e"
print(x[-5]) # Print 5th from the end character: "B"

We’re going to use these next when we talk about slices.

7.9 Slices
Problem-solving step: Understanding the Problem.

A slice is part of a string. You specify them by knowing the starting index and ending index into a string,
and separating them by a colon :.

x = "Beej!"
print(x[1:4]) # "eej"

The slice starts at the first index number and stops just before the second index number. (Remind you of
anything? Yes—just like range()!)

In this way, you can pull out any substring from a string.

7.10 Midterm Challenge
Problem-solving step: Understanding the Problem.

Write a program that will allow the user to input a string, then will print out the entire string except the
first and last characters. You can assume the string will be at least 3 characters long.

So if the user enters Beej!, we want to print out eej. If they enter Python, we want to print out ytho.

Problem-solving step: Devising a Plan.

We need to:

1. Input a string.
2. Get a slice of the string not including the first and last characters.
3. Print the slice.

Steps 1 and 3 are pretty straightforward. But what about step 2?

Since we don’t know how long the string will be (other than it’s three or more characters), we can’t just
get a slice from 1 to, say, 5. We have to get a slice from index 1 to the second-from-the-end character.

Fortunately, we know how to index to the second from the end: index -2! But wait–there’s a catch: slices
only go up to, but not including, the second index! So we need to end the slice at index -1 to cause it to
not include the last character.

Problem-solving step: Carrying out the Plan.

1 x = input("Enter a string of at least 3 characters: ")
2 y = x[1:-1] # all but the first and last
3 print(y)

Easy peasy!

Problem-solving step: Looking Back.

What could we have done better?

We didn’t need the intermediate variable y. We could have simply:

Chapter 7. Strings 41

1 x = input("Enter a string of at least 3 characters: ")
2 print(x[1:-1]) # all but the first and last

Also, we’re not actually enforcing the user to enter at least 3 characters. How would we do that? Remem-
ber how we used a while loop before to verify input? We could do the same.

But how can we tell if a string is at least a certain length? There are a couple of ways. Turns out, your
slice will be an empty string ("") if the length of the string is less than 3, and you could use that to detect.

In a bit, we’ll also discuss the len() function that will give you the length of any string you pass in.

7.11 Interlude: Mutable versus Immutable Types
Problem-solving step: Understanding the Problem.

So far we’ve learned about three data types: integer, float, and string. All of these share a common
characteristic: they’re all immutable. (That is, you cannot change them. Note that you can always change
the thing a variable refers to—that is, you can assign the variable to refer to something else—but you can’t
change the immutable thing, itself.)

What this means is that any time you do an operation on any of the types, you get a new entity back. Maybe
the old one is kept, or maybe it is forgotten depending on how your code works.

In short, there’s no way to add something to the end of a string. You can take a string and add something
to it to make a completely new string with the new stuff on the end, but it’s a new string. The original is
never modified since it’s immutable.

x = "hello"
y = x + " world"

print(x) # hello
print(y) # hello world

See in that example how the value of x is unchanged? We couldn’t change it if we wanted to. Check this
out:

x = "hello"
print(x[2]) # print character 2, namely "l"

x[2] = "z" # ERROR! Python won't allow you to change the string!

If you wanted to make a string where character number 2 is swapped out, you’ll have to slice it up and
build it yourself.

x = "hello"
y = x[:2] + "z" + x[3:] # Make a new string

print(y) # hezlo

Or you could use regular expressions1 or some other string methods to replace the letter… but remember
that these methods produce a new string—they have to since strings are immutable!

It’s the same story with numbers, although this is behavior that you might take for granted, it’s so expected.

x = 12
y = x + 2 # This creates a new number--it doesn't change 12

1We’ll talk about regular expressions, or regexes, later.

Chapter 7. Strings 42

print(x) # 12
print(y) # 14

Like I said, so far all the types we’ve learned about are immutable. But later, we’ll talk about lists, dictio-
naries, and sets, which are the three mutable types in Python.

So remember: any time you think you are “changing” a string, you’re actually making a completely new
one. It’s important to keep this model in mind because it will prevent all kinds of bugs and misunderstand-
ings as we progress.

7.12 for-loops with Strings
Problem-solving step: Understanding the Problem.

Remember how we used for with range() earlier to count up to a certain number? Turns out for is far
more capable than just doing that. It’s just full of surprises!

We can use a for loop on a string to process the characters individually.

s = "Hello!"

for c in s:
print("character:", c)

If you run this, you’ll see it prints each of the characters in turn:

character: H
character: e
character: l
character: l
character: o
character: !

You can use this if you ever need to traverse a string a character at a time. Of course, if you only want to
traverse part of a string, you can slice it first!

Another little tidbit here that might be useful is the enumerate() function. This will return a series of
index-value pairs. That is, it returns both the index into the string and the character at that index.

s = "Hello!"

for i, c in enumerate(s):
print("character at index", i, "is:", c)

outputs:

character at index 0 is: H
character at index 1 is: e
character at index 2 is: l
character at index 3 is: l
character at index 4 is: o
character at index 5 is: !

That’s useful if you need to know the index and the character. More on the enumerate() function later.

7.13 String Functions and Methods
Problem-solving step: Understanding the Problem.

Chapter 7. Strings 43

Python has a lot of built-in functions to help you manipulate and use strings.

Here are a few of them:

Function Example Description

bool() bool(s) Convert to Boolean value. The only string that converts to False is
the empty string "". (This means that an empty string will count as
False in an if condition.)

float() float(s) Convert to floating point value.
input() input(s) Print prompt s, then return string entered on keyboard.
int() int(s) Convert to integer point value.
len() len(s) Return the length of a string.
print() print(s) Print a string.

Take note of the len() function—we’ll use that to tell us how many characters there are in a string.

But now I want to introduce a new term and style of coding that you’ll frequently encounter moving
forward: methods.

Methods are functions that work on a specific object. We’re getting ahead of ourselves with this “method”
and “object” talk, but for now think of them as functions that work on a specific string.

But isn’t that just like the functions we just saw?

Yes, you got me. But we use these differently! Yay! This will all make more sense someday in the future,
but bear with me for now.

Let’s look at an example with the .upper() method. (Usually pronounced “dot upper” or “upper
method”.)

a = "Beej!"
b = a.upper()
print(b) # BEEJ!

print(a) # Beej! -- unchanged since .upper() returns a new string

The upper method converts a string to uppercase.

Now, conversationally, I said “converts to”, but remember that strings are immutable, so it really doesn’t
change the string in a at all. It makes a new uppercase version of the string and returns it, and we refer
that to the new string by b.

As for methods, there are a whole bunch of them attached to strings. So you can take any string, add a dot
(.), and then put the method name to operate on that string. They work just like regular functions, except
have this different notation.

FunObjected-Oriented ProgrammingFact: all this talk about methods and objects has its roots in
a programming paradigm calledObject-Oriented Programming (OOP). A programming paradigm
is a way of modeling problems so that you can solve them. So far, we’ve been using the imperative
programming paradigm, which means we think of a problem as a sequence of steps and conditions.
But with OOP, you think of a problem as a collection of objects that you can do things with.

Python is “multiparadigm”, which means it can do OOP or imperative as we see fit. We’ll use a
mix of them from now on, and we’ll cover OOP in more detail in its own chapter.

Here are some common string methods:

Method Description

.split() Split a string into a list2 on the given string.

2More on lists in upcoming chapters.

Chapter 7. Strings 44

Method Description

.strip() Strip whitespace3 from both ends of the string.

.upper() Convert string to all uppercase.

.lower() Convert string to all lowercase.

.replace() Replace all occurrences of one word with another in the string.

.find() Find the index of the substring in the string, or -1 if it’s not found.

.count() Count the number of occurrences of the substring.

.startswith() Return True if the string starts with the given string.

.endswith() Return True if the string ends with the given string.

.capitalize() Capitalize the first character of the string, if possible.

.title() Capitalize the first character in each word of the string.

Here are some examples:

s = "hello, goats! "

s.split(",") # ["hello", "goats! "]
s.strip() # "hello, goats!"
s.upper() # "HELLO, GOATS! "
s.lower() # "hello, goats! "

s.find("goats") # 8 (index of "goats" in the string)
s.count("goats") # 1
s.startswith("Goats") # False
s.endswith("goats! ") # True
s.capitalize() # "Hello, goats! "

s.replace("goats", "world") # "hello, world! "

You can also chain them together and they evaluate in turn, left to right:

s = " another EXAMPLE! "

s.strip().lower().capitalize() # "Another example!"

There are a whole lot of string methods4 you can use, more than we’re going to talk about here. But go
peruse them just so you have an idea of what you have at your disposal.

7.14 Formatted Output with F-Strings
Problem-solving step: Understanding the Problem.

So far we’ve just been using print() like so:

x = 10
print("x is", 10)

which works, but doesn’t offer as much control over the output.

Let’s take a look at something called F-strings which are new in Python 3.6. (“Formatting strings”.)

These offer us a really powerful method of formatting output. So powerful we’ll only be scratching the
surface here.

3Spaces, tabs, and newlines.
4https://docs.python.org/3/library/stdtypes.html#string-methods

https://docs.python.org/3/library/stdtypes.html#string-methods

Chapter 7. Strings 45

The gist is that we can make a new string where we inject the value of variables (or expressions) into a
string at a specific spot.

Simple example:

x = 10
print(f"x is {x}") # x is 10

Notice a couple of things:

1. There’s an f in front of the quotes. This signifies that this is an F-string, as opposed to a regular
string.

2. We inject the expression to evaluate inside curly braces5 { and }.

Python automagically evaluates that expression and puts the result into the F-string at that point.

Here’s another:

x = 10
print(f"x plus 10 is {x + 10}") # x plus 10 is 20

But that’s not all!

We can also put a field width in there which controls how big the “cell” is in which the number is printed.

Compare this:

print(f"a number: {1000}")
print(f"a number: {50}")
print(f"a number: {250}")

which outputs:

a number: 1000
a number: 50
a number: 250

to this:

print(f"another number: {1000:4}")
print(f"another number: {50:4}")
print(f"another number: {250:4}")

which outputs:

another number: 1000
another number: 50
another number: 250

The :4 says to output the expression in a 4-space-wide field. This gives us a great way to make columns
align on subsequent rows, like if you were printing out a spreadsheet.

Another thing it can do is specify a number of decimal places to print out floating-point numbers.

x = 3.1415926
print(f"Pi is {x:.2f}") # Pi is 3.14

That format string says “print x as a floating-point number, with 2 decimal places”.

F-strings are really powerful when it comes to controlling your output. We’ll explore more as we go.
5Also called squirrely braces.

Chapter 7. Strings 46

7.14.1 .format()Method
There is yet-another method of printing formatted strings that are really similar to F-strings: using
.format():

x = 3.1415926
print("Pi is {:.2f}".format(x)) # Pi is 3.14

This form has fallen out of favor due to the popularity of F-strings.

7.14.2 % printf Operator

If you go back even farther in time, you might find instances of % being used as the printf operator to
format output. An example:

x = 3.1415926
print("Pi is %.2f" % x) # Pi is 3.14

It’s even farther out of favor. F-strings are the new thing.

Fun Computing History Fact: printf() is a function in the C programming language that was
considered so awesome that the creators of Python decided to immortalize it with the % operator
that does the same thing. And even now, the format specifiers used in F-strings to describe the type
of data being printed match those from the C language. Not bad for a language invented in the
1970s, eh?

Note that the printf % operator is the same as the arithmetic modulo (remainder) operator %. Python looks
at the arguments to the operator and does the right thing. If the left argument is a string, it’s printf. If it’s
a number, it’s modulo.

7.15 Chapter Project
It’s time to do that project… way back from the beginning of the chapter! Remember? If not, jump back
to the top and refresh.

We’re going to print a times table. This will use knowledge from this chapter, as well as from previous
chapters. Use any means you know to solve the problem.

Problem-solving step: Understanding the Problem.

Let’s take another look at the sample output when the user enters 4:

1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16

(If you’re rusty on your multiplication tables, what you do to multiply 3 × 4 is to look up 3 along the top
edge, then look up 4 along the left edge, and then look in the table where they cross. There you’ll find 12,
the answer.)

How can do we attack this? Let’s look at a couple of things.

First, look for patterns. See any?

I’ll wait while you look.

There are several in there.

• The diagonals read 1, then 2 2, then 3 4 3, then 4 6 6 4… it’s symmetric.
• The first row is 1 2 3 4, and the second is 2 4 6 8, and the third is 3 6 9 12. The first skips by 1, the
second by 2, the third by 3.

Chapter 7. Strings 47

• Columns do the same as rows in terms of numbers skipped.

Can we use any of those to our advantage? Maybe…!

Second, let’s try to simplify the problem.

What if the problem were to print:

1 2 3 4

and that’s all. How would you solve that?

What if it were to print only this:

3 6 9 12

How would you solve that?

Fun Realism Fact: There are a lot of ways to program this. As I write this, at least four are
immediately coming to mind. Remember: coding is creative and there’re almost always many
ways to get the same result. Be creative! It’s your sandbox to mess around in! You can’t break the
computer.

Problem just some simple for loops, right? We could do this with three for loops:

1 2 3 4
2 4 6 8
3 6 9 12

Something like this (pseudocode):

for i in range(1, 5, 1): print(...)
for i in range(2, 10, 2): print(...)
for i in range(3, 15, 3): print(...)

But of course, we don’t just want to print rows three times… the end result is going to have the number
of rows that the user input. We need to loop to make it happen. A loop of loops! A nested loop!

Problem-solving step: Devising a Plan.

Before we jump into this, I’d like you to take the time to think about this. Set a timer and work on it for
3 minutes.

Do it.

Timer. Do it. You will gain valuable experience points for the attempt.

I’ll be back in 3 minutes.

[Elevator music—do it now!]

Okay, I’m back. What did you come up with?

I’ll go over one solution here, but if you came up with one and it’s different, don’t worry! There are no
wrong answers here. There are only answers that you, personally, like better or worse than others. Part of
being skilled in the art is that you can get better at making these assessments as you progress.

One possible plan for this is to have an inner loop (the nested loop) that prints a complete row out. In
other words, it’s printing out all the columns in the row. And then outside of that, we have the outer loop
that is responsible for printing out a bunch of rows.

And then inside there, we have to compute what values to print for each row, based on which row we’re
on.

First, we have to get user input. Let’s do that, and validate that it’s between 1 and 19 similar to the last
project.

Chapter 7. Strings 48

while input isn't between 1 and 19:
ask the user for input

After that, we’ll print the table:

outer loop over rows:
inner loop over columns:

print value for column

Of course, printing the value for the column is the tricky bit.

Remember when we did our sample with three hardcoded loops, above?

for i in range(1, 5, 1): print(...)
for i in range(2, 10, 2): print(...)
for i in range(3, 15, 3): print(...)

See any patterns in there? 1 2 3 is a pretty easy one. But what about that 5 10 15? Clearly, it’s multiples
of 5, but where does “5” come from?

In that example, we were printing rows and columns from 1 to 4. (That is, the user inputs the number 4.)
And 5 is one more than 4. That’s a pattern. Is it the right one? Let’s try!

If we take the first 3 numbers in the ranges (that is, 1 2 3), and multiply by 4+1, we end up with 5 10 15,
just like we want.

So there’s a formula in there for that middle number in the range. Assuming the user enters x as the value,
then the middle number for any range() call would be:

row_number * (x + 1)

and the first and last numbers in the range would simply be the row number!

The last thing we need to do is make sure we have the times table all formatted correctly so that the
columns line up. The biggest number we’ll print is 361 (19×19) so we’ll need a space between columns
and three spaces for the number. We can use an F-string with a field width of 4 to make this happen.

Problem-solving step: Carrying out the Plan.

Let’s start by entering a number and make sure this works:

1 valid_input = False
2

3 while not valid_input:
4 x = input("Enter a number between 1 and 19: ")
5 x = int(x)
6

7 if x >= 1 and x <= 19:
8 valid_input = True
9

We just loop until we get valid input, just like in the last project.

Now for the times’ table part. We want to go from 1 to the number entered, so we’ll start at 1 and go to
x + 1.

And then we’ll compute the max number for each row, just like we planned, above. And we’ll print the
value!

One gotcha is that we want to print a bunch of things on the same line and print() goes to the next line
by default. We’ll use our friend end="" in the print() call to keep it on the same line, and then add
another empty print() after the loop to go to the next line.;

Chapter 7. Strings 49

(Continuation of the code above!)

10 for row in range(1, x + 1):
11 for product in range(row, row * (x + 1), row):
12 print(f"{product:4}", end="")
13 print()

Let’s try it!

Enter a number between 1 and 19: 6
1 2 3 4 5 6
2 4 6 8 10 12
3 6 9 12 15 18
4 8 12 16 20 24
5 10 15 20 25 30
6 12 18 24 30 36

Woot!

Did you have another solution that worked? There are plenty others!

Problem-solving step: Looking Back.

What are the corner cases that you should test? (Look for the if statements, and test on either side of
those. 0 and 1 and 19 and 20.)

If you didn’t come up with a different solution, try to do so now. What if you used while loops instead
of for loops?

(Solution6.)

7.16 Exercises
Remember: to get your value out of this book, you have to do these exercises. After 20 minutes of
being stuck on a problem, you’re allowed to look at the solution.

A lot of these can use for loops in the solution! Use any knowledge you have to solve these, not only
what you learned in this chapter.

Always use the four problem-solving steps to solve these problems: understand the problem, devise a
plan, carry it out, look back to see what you could have done better.

1. Given the following varibles:

x = 3490
y = 3.14159

write code that prints out the following:

x is 3490.00
y is 3.14
x + y = 3493.14

(Solution7.)

2. Write code to count the number of occurrences goat in this string:

s = "How many goats could a goat goat goat if a goat could goat"

6https://beej.us/guide/bgpython/source/examples/multtable.py
7https://beej.us/guide/bgpython/source/examples/ex_fstring.py

https://beej.us/guide/bgpython/source/examples/multtable.py
https://beej.us/guide/bgpython/source/examples/ex_fstring.py

Chapter 7. Strings 50

(Solution8.)

3. Using this string, create a copy of it where all the vowels are uppercase and all the consonants are
lowercase.

s = "The quick brown fox jumps over the lazy dogs."

Hint: think like a human. If you had a physical set of blocks with letters on them in front of you,
what would be the process and steps for building a new string with the required changes?

(Solution9.)

4. Allow the user to input a string, and also a number. Print out the character at that index number in
the string. Don’t allow the user to enter a number that’s out of range.

(After you solve this, check out the solution10 for a twist on checking for valid input.)

5. Allow the user to input a string, and also two numbers. Print out the slice from those index numbers
in the string. Don’t allow the user to enter numbers that are out of range.

(In the solution11, there’s duplicated code to enter two numbers. Later, when we get to functions,
we’ll learn how to remove this duplicated code.)

6. Makeup two more exercises and code them up.

7.17 Summary
In this chapter, we did all kinds of crazy things with strings.

• Conversions from other types
• How to concatenate strings with +
• How to get characters and slices out of a string
• How for loops process strings
• Learned a bunch of string methods and functions
• Formatted output with F-strings

Coming up, we’re going to learn even more built-in data types that we can use. After that, we’ll talk about
functions, and then you’ll be dangerously close to being able to write real programs!

8https://beej.us/guide/bgpython/source/examples/ex_goatcount.py
9https://beej.us/guide/bgpython/source/examples/ex_uppervowel.py
10https://beej.us/guide/bgpython/source/examples/ex_charat.py
11https://beej.us/guide/bgpython/source/examples/ex_sliceat.py

https://beej.us/guide/bgpython/source/examples/ex_goatcount.py
https://beej.us/guide/bgpython/source/examples/ex_uppervowel.py
https://beej.us/guide/bgpython/source/examples/ex_charat.py
https://beej.us/guide/bgpython/source/examples/ex_sliceat.py

Chapter 8

Lists

8.1 Objective
• Understand what lists are
• Understand how assignments with mutable types work
• Access individual elements and slices in a list
• Iterate over lists with for
• Use common lists built-in functions
• Construct new empty lists of repeating fixed values
• Construct new lists with list comprehensions
• Construct and use lists of lists (2D lists)

8.2 Chapter Project Specification
Game time!

Allow the user to navigate a maze by entering directions to move (n, s, w, or e). They can also enter q to
quit.

The maze should look like this, with . representing a space the player can move into, and # representing
a wall. An @ symbol indicates the player’s current position.

Every move, the map should be displayed:

#####################
#...#...............#
#...#..........#....#
#...#..........#....#
#...#..........#....#
#...#..@.......#....#
#..............#....#
#..............#....#
#####################

Enter a move (n,s,w,e,q):

Keep this project in mind as you read through the chapter.

8.3 What Are Lists?
Problem-solving step: Understanding the Problem.

Remember how regular variables hold one thing? Well, lists are variables that can hold a lot of things.

51

Chapter 8. Lists 52

Fun Lists Fact: Most other languages have a different name for lists: they call them “arrays”.
Same thing.

But wait—if a list can hold a lot of things, how do we differentiate? How do I tell Python that I want the
second thing in the list? Or the fifth thing?

Luckily it’s easy enough; we just have to specify the index into the list that holds the thing we want.

Think of it as a row of postboxes, numbered starting from 0, then 1, then 2, and going on up to however
many postboxes we have. Each postbox can hold a thing, and you can refer to it by giving the postbox
number.

Let’s take a look at a simple example:

x = [10, 3, 7, 9]

There’s a list. We know it’s a list because of the square brackets around it. It’s a list of four integers.

Let’s print out the zeroth element in the list. We do this by using square brackets after the list variable
name and giving the index inside those brackets. Does this look familiar? It’s the same syntax we used to
get individual characters out of strings!

print(x[0]) # prints 10

and the element at index 2:

print(x[2]) # prints 7

Do you remember that strings had a cool trick where you could use a negative index to refer to characters
from the end of the string? We can do the same thing with lists!

print(x[-1]) # prints 9, the element at the end of the list

Remember that indexes start at zero, again, just like with strings.

Keeping with the “things you can also do with strings” theme, you can also slice an array, just like a string.

a = [1, 2, 3, 4, 5]

b = a[1:-1] # Slice all but the first and last elements

print(b) # [2, 3, 4]

You can also set individual elements, leaving the rest of the list unchanged:

x[1] = 99

print(x[1]) # now prints 99

This brings us to a stark difference between lists and strings: lists are mutable. You can change individual
elements inside the list without creating a new list! Remember with strings, you couldn’t change them—
you could only make new ones.

It’s such a key difference, we’re going to talk about it in detail now, and then again later. This is a big
source of confusion among new developers.

Chapter 8. Lists 53

8.4 List Assignments
Do you remember way back in the variables chapter when I was talking about how variable assignment
worked? Revisit it if you have to.

And you were wondering what that had to do with anything?

Well, we’re going to check it out again, but this time in the context of lists.

We just mentioned that lists are different than integers in that lists are mutable. We can change them. This
has some interesting repercussions.

Let’s look at strings versus lists.

x = "Hello"
y = x

In that example, as we learned earlier, there is one string "Hello" in memory, and both x and y refer to
it.

Strings are immutable. So you can’t do something like this:

x = "Hello"
y = x

Change character at index 2 to 'Z'
x[2] = "Z" # ERROR! Strings are immutable--you can't change them

But lists are mutable. We can change something that’s in a list. Let’s do an analogous example:

x = ["A", "B", "C", "D"]
y = x

Change string at index 2 to 'Z'
x[2] = "Z" # Works

print(x[2]) # "Z"
print(y[2]) # "Z" also!!!

Wait—what happened there? We changed the value in the second index of x, but it also changed it in y!
How did that happen?

Remember: it’s because when we did:

x = ["A", "B", "C", "D"]
y = x

both x and y came to point to the same list. There is only one list. Both x and y refer to it. So if you
change that one list, you see that change reflected in both x and y.

(If you could change a string, it would work the same way. But you can’t because it’s immutable.)

Mutable types include the following (some of which we haven’t talked about yet):

• Lists
• Dictionaries
• Objects1
• Sets

1Technically, lists and dictionaries are objects, so we’re being a bit redundant.

Chapter 8. Lists 54

In some languages, types that appear to get copied on assignment (like strings and integers) are
called value types. Whereas types that can be referred to by multiple variables through assignment
(like lists) are called reference types. Python doesn’t make this distinction, although you might
hear this phraseology used in the wild.

What if you want a copy of a list, and not just a copy of the reference? You can force a list copy a number
of ways, but these are three common ones:

b = a.copy() # Copy with .copy() method
b = list(a) # Copy with the list() function
b = a[:] # Copy by slicing the entire list

Even if you don’t have it quite down yet, don’t worry. We’ll hit this topic a few more times as we progress.

8.5 for and Lists—Powerful Stuff
Problem-solving step: Understanding the Problem.

Remember our good friend the for loop? We used it with range to loop a number of times, and we used
it with strings to loop over each character in the string.

We can also use it with lists2 to do things with each list element in order!

Here’s a simple example that prints all the elements in a list:

x = [11, 55, 33, 99]

for i in x:
print(f"element is: {i}")

and this will output:

element is: 11
element is: 55
element is: 33
element is: 99

But wait, there’s more!

Recall from above that you can get the element out of a list if you know its index, for example, x[2].

Let’s put those together in another way to use for and lists. This example does the same thing as the one
above, just in a different way:

x = [11, 55, 33, 99]

for i in range(4):
print(f"element is: {x[i]}")

Although that’s not idiomatic Python3 (the first example is better), it demonstrates how to use a variable
as the index. We refer to x[i] inside the loop, and then have i change to loop over every element’s index.

It’s irking me that we have that hard-coded 4 in the range(). It only works for lists of length 4. Let’s see
if we can fix it.

Sneak preview: you can get the number of elements in a list with len().

Let’s make the range() go up to “the length of the list” instead of to 4:

2Technically we can use it to iterate over anything that’s iterable, which is quite a number of things.
3Idiomatic means “the standard, accepted way of doing a thing in a language”.

Chapter 8. Lists 55

x = [11, 55, 33, 99]

for i in range(len(x)): # <---
print(f"element is: {x[i]}")

And now that works for lists of any length—much better!

8.6 for and enumerate()

Problem-solving step: Understanding the Problem.

In the examples above, we used for with the elements in the list themselves, and also with range() over
the indexes of the elements in the list.

What if you want to do both at the same time? That is, you want the elements and you want the indexes?

A function that’s worthy of mention is enumerate(). It will iterate through each element in the list,
returning the element and its index. You can get them both at the same time!

x = [11, 55, 33, 99]

for i, v in enumerate(x):
print(f"The element at index {i} has value {v}")

This results in:

The element at index 0 has value 11
The element at index 1 has value 55
The element at index 2 has value 33
The element at index 3 has value 99

8.7 Midterm: Doubling The Values
Problem-solving step: Understanding the Problem.

Let’s write some code that takes a list and goes through all the elements in that list. If an element is even,
we should multiply the value by 2. If it’s odd, we should do nothing with it.

For example, if the input list is:

[1, 2, 3, 4, 5, 6]

after processing and doubling all the even values, it will be:

[1, 4, 3, 8, 5, 12]

Problem-solving step: Devising a Plan.

We know we need to iterate over the list, so that sounds like a job for a for-loop. And we need to test if
a number is even or odd, which sounds like a job for a if statement.

How can we tell if a number is odd?

There’s a very common way to do this. Divide by 2 and take the remainder. If the remainder is 1,
it’s odd. If it’s 0, it’s even.

Do you remember how to take the remainder in Python? With the modulo operator: %.

Chapter 8. Lists 56

x = 12

if x % 2 == 0:
print("x is even!")

else:
print("x is odd!")

So our plan is shaping up like this:

for each element in the list:
if that element is even:

double the value and store it at the same place in the list

Then maybe print it out at the end, just for fun.

Problem-solving step: Carrying out the Plan.

Here’s each line of the plan’s pseudocode converted to Python4:

1 x = [1, 2, 3, 4, 5, 6]
2

3 # for each element in the list
4

5 for i, v in enumerate(x):
6

7 # if that element is even
8

9 if v % 2 == 0: # check if v is even
10

11 # double the value and store it at the same place in the list
12 x[i] = v * 2
13

14 print(x) # Print it out, just for fun

And the output:

[1, 4, 3, 8, 5, 12]

Voila! There it is!

Problem-solving step: Looking Back.

Anything you could make better about this?

Instead of using enumerate(), you could have used for-range()-len() like we did in an earlier exam-
ple. Would you have felt that produced cleaner code?

(Remember: coding is creative. There are a lot of solutions. It’s up to you as a dev to make informed
decisions about which methods you like more than others!)

One interesting thing to note is that on line 14, we just printed the entire list in one go. You can do that!
print() prints out the string version of whatever you pass in. More on that in the future.

8.8 Built-in Functions for Lists
There are several useful built-in functions and methods5 that you can use with lists. Some we’ve already
seen.

4https://beej.us/guide/bgpython/source/examples/listdouble.py
5Remember that a method is a function that you call on a particular object with the dot (.) operator.

https://beej.us/guide/bgpython/source/examples/listdouble.py

Chapter 8. Lists 57

In the following table, the variable a represents a list.

Function Description

len(a) Return the number of elements in the list
enumerate(a) Iterate over index/value pairs in the list
a.append(x) Append variable x to the end of the list
a.clear() Clear all elements from the list
a.copy() Make a copy of the list
a.count(v) Count the number of occurrences of v in the list
a.extend(b) Add elements of list b to end of list a
a.index(v) Return the first index of v in list a
a.insert(i,v) Insert v in list a before index i
a.pop() Remove and return the last element in a
a.pop(i) Remove and return the element at index i in a
a.reverse() Reverse the elements in the list
a.sort() Sort the list

Let’s just fire up the editor and start messing around with these to see how they work.

Here’s a program called listops.py6 that does just that. You should also experiment with variations of
these to get a feel for them:

1 a = [5, 2, 8, 4, 7, 4, 0, 9]
2

3 print(len(a)) # 8, the number of elements in the list
4

5 a.append(100)
6

7 print(a) # [5, 2, 8, 4, 7, 4, 0, 9, 100]
8

9 print(a.count(4)) # 2, the number of 4s in the list
10

11 print(a.index(4)) # 3, the index of the first 4 in the list
12

13 v = a.pop() # Remove the 100 from the end of the list
14

15 print(v) # 100
16 print(a) # [5, 2, 8, 4, 7, 4, 0, 9]
17

18 a.reverse() # Reverse the list
19

20 print(a) # [9, 0, 4, 7, 4, 8, 2, 5]
21

22 a.insert(2, 999) # insert 999 before index 2
23

24 print(a) # [9, 0, 999, 4, 7, 4, 8, 2, 5]
25

26 b = [1, 2, 3]
27

28 a.extend(b) # Add contents of b to end of a
29

30 print(a) # [9, 0, 999, 4, 7, 4, 8, 2, 5, 1, 2, 3]
31

32 a.sort() # Sort all elements
33

6https://beej.us/guide/bgpython/source/examples/listops.py

https://beej.us/guide/bgpython/source/examples/listops.py

Chapter 8. Lists 58

34 print(a) # [0, 1, 2, 2, 3, 4, 4, 5, 7, 8, 9, 999]
35

36 a.clear() # Remove all elements
37

38 print(a) # [], an empty list of length 0

In addition to those functions, the + operator will take two lists and concatenate them together into a third
list:

a = [1, 2, 3]
b = [4, 5, 6]

c = a + b # c refers to a new list [1, 2, 3, 4, 5, 6]

lists a and b are unchanged

Look at the amount of control we have over lists now! Not only can you read and write values at specific
list indexes, but you can add to the end, insert stuff in the middle, remove from the end, or from anywhere
within the list.

You are All Powerful!

Okay, maybe not, but at least you can do a thing or two with lists.

8.9 What Good Are They?
“So I can become some kind of list ninja. What good does that do me?”

When it comes to anything in programming, it’s often helpful to try to think of physical, actual real-life
examples. What are some of the lists you have in real life? You can use Python lists to store those.

Shopping lists, bowling scores, favorite rocks, employee names, numbers, etc., etc.

shopping_list = [
"spam",
"eggs",
"bacon",
"sausage",
"spam",
"spam"

]

Sometimes we know those lists upfront, and other times we compute them as we go.

8.10 Midterm Challenge
Problem-solving step: Understanding the Problem.

More math! [Groan!] Let’s compute the Fibonacci Sequence! [Yay!]

The Fibonacci Sequence is a famous mathematical sequence (a progression of related numbers) that runs
like this:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89...
Before I give it away, study it a bit—can you see the pattern?

Lots of times, the job of a dev is to find patterns in data so that you can write code that generates them.

Spoiler alert!

Chapter 8. Lists 59

Each number is the sum of the previous two numbers.

0 + 1 = 1, 1 + 1 = 2, 1 + 2 = 3, etc.
But what about the first two numbers in the sequence

Those are given to be 0 and 1, no questions asked. This way you always have at least two previous
numbers to get the next one.

What we want to do is write a program that builds and prints a list containing the first 100 Fibonacci
numbers. We don’t want to do any of the addition ourselves—we want the code to compute it for us.

Problem-solving step: Make A Plan.

We’re going to need a list to hold all the numbers.

We have the first two numbers (0 and 1), so we can put those in the list.
Then we have to look at the previous two numbers from the end, add them together, and then append the
sum to the end of the list.

And we have to do that 98 more times to get 100 numbers.

Doing something 98 times seems like a for-range() loop to me.

We can append with the .append() method.

We can get the last and previous-to-last elements in the list with negative list indexes.

initialize the list with [0, 1]

for 98 times:
compute the sum of the previous two numbers
append sum to the list

print the list

Time to code it up!

Problem-solving step: Carrying out the Plan.

fiblist.py7:

1 # initialize the list with [0, 1]
2 fib = [0, 1]
3

4 # for 98 times
5 for _ in range(98):
6

7 # compute the sum of the previous two numbers
8 s = fib[-1] + fib[-2]
9

10 # append sum to the list
11 fib.append(s)
12

13 # print the list
14 print(fib)

And you’ll get some output that looks vaguely like this (I’ve rewrapped the output here—yours might not
be so pretty):

7https://beej.us/guide/bgpython/source/examples/fiblist.py

https://beej.us/guide/bgpython/source/examples/fiblist.py

Chapter 8. Lists 60

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418,
317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465,
14930352, 24157817, 39088169, 63245986, 102334155, 165580141, 267914296,
433494437, 701408733, 1134903170, 1836311903, 2971215073, 4807526976,
7778742049, 12586269025, 20365011074, 32951280099, 53316291173,
86267571272, 139583862445, 225851433717, 365435296162, 591286729879,
956722026041, 1548008755920, 2504730781961, 4052739537881,
6557470319842, 10610209857723, 17167680177565, 27777890035288,
44945570212853, 72723460248141, 117669030460994, 190392490709135,
308061521170129, 498454011879264, 806515533049393, 1304969544928657,
2111485077978050, 3416454622906707, 5527939700884757, 8944394323791464,
14472334024676221, 23416728348467685, 37889062373143906,
61305790721611591, 99194853094755497, 160500643816367088,
259695496911122585, 420196140727489673, 679891637638612258,
1100087778366101931, 1779979416004714189, 2880067194370816120,
4660046610375530309, 7540113804746346429, 12200160415121876738,
19740274219868223167, 31940434634990099905, 51680708854858323072,
83621143489848422977, 135301852344706746049, 218922995834555169026]

Problem-solving step: Looking Back.

Notice how the list grows bigger and bigger with each step of the loop. If we were to print out the list for
every iteration of the loop, we’d see something like this:

[0, 1]
[0, 1, 1]
[0, 1, 1, 2]
[0, 1, 1, 2, 3]
[0, 1, 1, 2, 3, 5]
[0, 1, 1, 2, 3, 5, 8]
[0, 1, 1, 2, 3, 5, 8, 13]

and so on. We’re constructing the list as we go, building it from the previous elements8.

Another thing I did in the for loop was use _ as the looping variable name. That’s a perfectly legitimate
variable name9.

By convention, _ is used as a name when you don’t intend to use it elsewhere.

You must have a variable named in your for loop—no option not to. But using _ for that name indicates
to programmers that you are just using the loop to count, and you don’t actually care what the count is.

8.11 Building New Lists, Repeating and Empty
Problem-solving step: Understanding the Problem.

We’ve already seen how to initialize a list with a few elements in it:

a = [11, 55, 33, 99]

You can multiply a list by a constant value to get a new list repeated that many times.

What?

Easier demonstrated:

8We’re using a technique here generally called bottom-up dynamic programming. But that’s a story for another time. Probably
involving Fibonacci again.

9Names can be made up of letters, digits, and underscores, as long as they don’t start with a digit.

Chapter 8. Lists 61

a = [11, 99]
b = a * 3

print(b) # [11, 99, 11, 99, 11, 99]

It just repeats the list that many times into a new list.

A very common use of this is to create a new list of a certain number of elements, initialize to zero:

a = [0] * 10
print(a) # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

While we’re on about esoteric list declarations, you can declare a list of no elements like so”

a = []

presumably to compute values for later.

8.12 List Comprehensions
Problem-solving step: Understanding the Problem.

This is a really neat language feature of Python. It allows you to construct a new list from an old one,
modifying and filtering elements as you go.

Before going into the syntax, we’ll write something using what we know so far with for and if and see
how that looks. Then we’ll compare it to a list comprehension version.

I’m going to write some code that takes a list and produces a new list from it, not including all the odd
numbers, and replacing the even numbers with the even number times 4.

a = [1, 2, 3, 4, 5, 6]
new_list = []

for v in a:
if v % 2 == 0: # if v is even

new_list.append(v * 4)

print(new_list) # [8, 16, 24]

Study that until you’re sure you have it down.

Now, here’s that same program as a list comprehension:

a = [1, 2, 3, 4, 5, 6]
new_list = [v * 4 for v in a if v % 2 == 0]

print(new_list) # [8, 16, 24]

Well, it’s certainly more concise!

But it’s also, I’m suspecting you’re finding, a lot harder to read. Yeah.

It’s always like this when you try to pick up a new piece of weird syntax you’ve never seen before. At
first, it’s all weird, but the more you study it, the more used to it you get.

What I don’t want is for you to look at it and think, “It’s unreadable! Forget it!”

All you have to do is take it a step at a time.

What do we have in that line?

Chapter 8. Lists 62

result loop filter
|----| |--------| |-----------|
new_list = [v * 4 for v in a if v % 2 == 0]

It’s split into three parts.

The “result”: this is what values will be included in the output list. The variable named here is the one in
the “loop” clause.

The “loop”: assigns elements from the list into a variable, repeatedly.

The “filter” (optional): only elements for which the condition is true will be included in the output.

If we wanted to include only the odd numbers times 4, we could have done this:

result loop filter
|----| |--------| |-----------|
new_list = [v * 4 for v in a if v % 2 == 1]

Or the odd numbers divided by 3:

result loop filter
|----| |--------| |-----------|
new_list = [v / 3 for v in a if v % 2 == 1]

Leaving the filter off makes the list unconditionally. For example, all the numbers in the list times 4:

result loop
|----| |--------|
new_list = [v * 4 for v in a]

When should I use them?

Any time you’re making a new list from an existing one and you want to optionally change or filter
elements from the original list, list comprehensions are a great tool to us.

8.13 Lists of Lists
Problem-solving step: Understanding the Problem.

You can have lists of just about anything in Python. Lists of numbers, lists of strings, lists of lists…

That’s right, folks. Lists containing other lists. How does that work?

Here’s one example where we’ll make a bunch of lists, and then put them in another list.

x = [1, 2, 3]
y = [4, 5, 6]
z = [x, y]

It’s important to note that when we assign into z, we’re not copying lists x and y. What we’re
doing is making it so that the values in list z refer to the same lists as x and y do.

In other words, there’s only one list in memory with the values [1,2,3]. And is referred to by
both x and z[0]. Both variables reference the same list.

In that example, how could we access elements of the lists-in-list?

We’re going to use square bracket notation again, but even more so.

Chapter 8. Lists 63

x = [1, 2, 3]
y = [4, 5, 6]
z = [x, y]

print(z[0]) # z[0] refers to x, so this prints [1, 2, 3]
print(z[1]) # z[1] refers to y, so this prints [4. 5. 6]

So far so good?

Here’s the thing to notice: since z[0] and z[1] are lists, you can access the elements within those lists
by using square bracket notation again.

Let’s try to get the number 6 out of that second list.

print(z[1][2]) # prints 6

Take apart that line of code. What’s happening there?

First Python evaluates the first square brackets it comes to. It knows z is a list, and so it evaluates z[1]
to get the list [4, 5, 6]. Then it takes that list and evaluates it with [2], getting the 6 out of it.

Another way to think of it would be to imagine using parentheses:

(z[1])[2] # first evaluate z[1], then evaluate [2] on the result

z[1][2] # this is equivalent to the previous line

(While Python doesn’t mind if you use parentheses like this, programmers don’t do it since it makes the
code look messy.)

But what does this buy us? Lists of lists are exciting and all. (Right?) What are they useful for?

Having a list of lists literally adds a second dimension to the data you can represent. With a single list,
you can represent one “row” of data. With a list of lists, you can represent multiple rows or a grid of data.

What are some places in computing a grid or multiple rows of data are used?

Spreadsheets! What else? See if any other ideas come to mind.

For declaring lists of lists, it’s really common to just declare them all at once, and not use an intermediate
variable to represent the sublists.

For example, the previous list we were using, above, could be declared more simply like so:

z = [
[1, 2, 3],
[4, 5, 6]

]

or, if it looks better and your style guide allows it, you can put it on one line:

z = [[1, 2, 3], [4, 5, 6]]

print(z[0][1]) # Prints 2

Now let’s see if we can put it all together for this chapter’s project!

8.14 Chapter Project Implementation
This is the big one. This project is going to draw on multiple things we’ve learned so far and put them all
together into a working solution.

Chapter 8. Lists 64

That makes this project more difficult than the previous ones. We’re going to break down the problem
and decide what tools we know that we can bring to bear to solve it.

And this is what being a software developer is all about.

I’m not expecting the answer to be obvious. You’ll rarely see a problem that has an obvious solution, even
as a seasoned developer. But we do have our problem-solving framework to break down the problem into
workable parts. So let’s do it!

Problem-solving step: Understanding the Problem.

We want to do several things with this project:

• Print a map on the screen
• Get user input
• Use the input to move a player indicator around the map
• Make sure the player doesn’t move through walls
• Keep repeating until the player quits

What’s missing from the spec that we need to know?

Remember your compass directions?

N
|

W --+-- E
|
S

Now’s the time to get the answers to questions clarified. Much easier to do it now than after you’ve coded
up the wrong thing!

What if the user provides invalid input? What happens then is missing from the spec. For that, let’s print
an error message:

Unknown command: {x}

Where x is whatever the user entered.

What if the player tries to move through a wall? Let’s use this error message:

You can't go that way.

Anything else missing from the spec?

Problem-solving step: Make A Plan.

We’re going to make use of two important techniques as we make this plan: simplify the problem and
breaking down subproblems.

Simplifying the problem means taking our eventual goal and remove requirements to make it easier to
code. Sure, eventually we’ll have to add those requirements back in, but simplifying the problem makes
the initial coding easier.

What are examples of things we can simplify about this project? Here are some ideas:

• Don’t bother putting the @ on the map where the player is
• Allow the player to move through walls
• Keep repeating forever, ignoring q
• Don’t validate user input

Again, we’ll have to add this eventually, but removing them temporarily makes it much easier to reach an
initial version.

The other technique, breaking down subproblems, is a variant of what we’ve been doing already.

Chapter 8. Lists 65

Let’s start with high-level pseudocode, and then break it down where required.

while not quit:
print map and player indicator
get input
make sure input is valid
make sure we're not moving through walls

How do we know that breaking down subproblems will be useful with this pseudocode? The first clue is
that some of the steps are substantial, e.g. “print map and player indicator” immediately brings to mind
the question, “How the heck can we do that?”

If any steps are too complex or are unclear, it means you have to break them down further. Let’s do that
for all the unclear sections:

while not quit:
print map and player indicator
for each row of the map:

for each column of the map:
if this is where the player is:

print @
else:

print the map character

get input
make sure input is valid

if input invalid:
print error message

elif input is "q":
quit

else:
figure out the new row and column of the player

if the map at the new player position is "#":
print "You can't go that way."

else:
set the current position to the new position

That’s significantly better. It’ll be a lot easier to translate to Python.

Now… how are we going to store the data we need for this project? And what data do we need, anyway?

• The map representation
• The player’s current position, row, and column

How are we going to store the map? In the spec, it’s displayed as text, like so:

#####################
#...#...............#
#...#..........#....#
#...#..........#....#
#...#..........#....#
#...#..........#....#
#..............#....#
#..............#....#
#####################

Chapter 8. Lists 66

where # is a wall and . is an empty floor (that we can move through).

We could store all that as a single string… but that might make our lives a little more difficult since we
have to put an @ in where the player is located.

And, because of that, we’re planning to print the map out a character at at a time so we can decide if we’re
going to draw an @ or the map character.

What would be a more sensible way to store the map rather than a single big string?

Ponder that for a second.

Spoiler alert!

How about a list of strings? One string would be one row of the map. Then we could go through the
single row a character at a time and decide what to print. (Remember we can use array bracket notation
on a string to get single characters out!)

Look at all the techniques we’re using!

• Variables to store player’s current row and column on the map
• A list of strings to store the map
• Iterating through a list with for
• Iterating through strings for for
• Nested for loops
• if conditions to decide what to do with user input
• if conditions to determine if we can move that direction
• Booleans and a while loop to run the game until the user quits

Holy moly! That’s a lot of stuff. But that’s what we do as software developers: we take all we know and
figure out how to put it together into the solution.

And it’s rarely an obvious one. We all have to work hard to come up with the answers.

Problem-solving step: Carrying out the Plan.

Before we start this phase, I want you to notice how much time we’ve spent on the Understand and Plan
phases without writing any code at all. It’s very tempting, especially for junior devs, to want to jump into
the code without spending sufficient time on Understanding and Planning. Unfortunately, this practice
causes one to waste productivity unnecessarily.

You’re not done understanding the problem until you have no more questions about.

You’re not done making a plan until you know how to convert every step of the plan to code.

If you spend enough time understanding and planning, coding almost becomes an afterthought.

And here we are. Let’s take our pseudocode and convert it into Python.

Coming back to simplify the problem, let’s start by just storing and printing the map. No player, no input,
no loop. Let’s just get that working.

First of all, we need to store the map data, so let’s do that:

1 # The map
2

3 map_data = [
4 "#####################",
5 "#...#...............#",
6 "#...#..........#....#",
7 "#...#..........#....#",
8 "#...#..........#....#",
9 "#...#..........#....#",
10 "#..............#....#",
11 "#..............#....#",
12 "#####################"

Chapter 8. Lists 67

13]

We’ve split the map list into multiple lines to make it easier to read.

Now we need to print it out. In our pseudocode, we used a nested for loop with if conditions.

1 # The map
2

3 map_data = [
4 "#####################",
5 "#...#...............#",
6 "#...#..........#....#",
7 "#...#..........#....#",
8 "#...#..........#....#",
9 "#...#..........#....#",
10 "#..............#....#",
11 "#..............#....#",
12 "#####################"
13]
14

15 # Print map and player indicator
16

17 for row in map_data: # for each row
18 for map_character in row: # for each col
19 print(map_character, end="")
20 print()

There are a couple of things to note there, so make sure to digest the code. We’re going through each row,
and for each row, we’re going through each column and printing the character.

We want the characters to all print on the same line for a given row, so we use the end="" trick to keep
Python from going to the next line.

And at the end of each row, we have an empty print() to get the cursor down to the next line for starting
to print the next row.

And when we run that, we get the map printed out!

But we don’t have the player position stored anywhere, and we’re not showing it on the screen. Let’s add
that next.

1 # The map
2

3 map_data = [
4 "#####################",
5 "#...#...............#",
6 "#...#..........#....#",
7 "#...#..........#....#",
8 "#...#..........#....#",
9 "#...#..........#....#",
10 "#..............#....#",
11 "#..............#....#",
12 "#####################"
13]
14

15 # Player position
16

17 player_row = 4 # <-- add player position
18 player_column = 9

Chapter 8. Lists 68

19

20 # Print map and player indicator
21

22 # Use enumerate() to get the row and column indexes for the if:
23 for row_index, row in enumerate(map_data): # for each row
24 for col_index, map_character in enumerate(row): # for each col
25 if row_index == player_row and col_index == player_column:
26 print("@", end="") # end="" no newline
27 else:
28 print(map_character, end="")
29 print()
30

So there we’ve added a couple of variables to store where the player is, and then in the map printing loop,
we check to see if this location is where the player is. If it is, print an @, otherwise print the map character.

For the next small thing to add, let’s get user input and quit if the user enters “q”. Otherwise, we’ll print
the map again in a loop.

1 # The map
2

3 map_data = [
4 "#####################",
5 "#...#...............#",
6 "#...#..........#....#",
7 "#...#..........#....#",
8 "#...#..........#....#",
9 "#...#..........#....#",
10 "#..............#....#",
11 "#..............#....#",
12 "#####################"
13]
14

15 # Player position
16

17 player_row = 4
18 player_column = 9
19

20 quit = False
21

22 while not quit:
23

24 # Print map and player indicator
25

26 for row_index, row in enumerate(map_data): # for each row
27 for col_index, map_character in enumerate(row): # for each col
28 if row_index == player_row and col_index == player_column:
29 print("@", end="") # end="" no newline
30 else:
31 print(map_character, end="")
32 print()
33

34 # Get input
35

36 command = input("Enter a move (n,s,w,e,q): ")
37

38 if command == "q":

Chapter 8. Lists 69

39 quit = True
40 continue # jump right back to the top of the while
41 else:
42 print(f'Unknown command {command}')

Getting there!

Something new to note! There’s a continue statement on line 40. This causes program execution to
jump back to the top of the while loop, ignoring the rest of the loop body. It means, “Don’t do anything
else in this block—just short circuit back to the while condition. (Which tests to false immediately and
exits the loop.)

So now we have the player position being printed, and we have the user inputting a command. However,
we still need to handle the directional commands and actually move the player around.

We plan to compute the new position for the player based on the current position and the user input. For
example, if the user goes north (up) on the screen, the player’s column stays the same, but the row number
decreases by 1.

1 # The map
2

3 map_data = [
4 "#####################",
5 "#...#...............#",
6 "#...#..........#....#",
7 "#...#..........#....#",
8 "#...#..........#....#",
9 "#...#..........#....#",
10 "#..............#....#",
11 "#..............#....#",
12 "#####################"
13]
14

15 # Player position
16

17 player_row = 4
18 player_column = 9
19

20 quit = False
21

22 while not quit:
23

24 # Print map and player indicator
25

26 for row_index, row in enumerate(map_data): # for each row
27 for col_index, map_character in enumerate(row): # for each col
28 if row_index == player_row and col_index == player_column:
29 print("@", end="") # end="" no newline
30 else:
31 print(map_character, end="")
32 print()
33

34 # Get input
35

36 command = input("Enter a move (n,s,w,e,q): ")
37

38 # Figure out the new row and column of the player
39 # Make sure input is valid

Chapter 8. Lists 70

40 if command == "n":
41 new_row = player_row - 1
42 new_column = player_column
43 elif command == "s":
44 new_row = player_row + 1
45 new_column = player_column
46 elif command == "w":
47 new_row = player_row
48 new_column = player_column - 1
49 elif command == "e":
50 new_row = player_row
51 new_column = player_column + 1
52 elif command == "q":
53 quit = True
54 continue # jump right back to the top of the while
55 else:
56 print(f'Unknown command {command}')
57

58 # Set the current position to the new position
59 player_row = new_row
60 player_column = new_column

That’s working great, but we can still walk through the walls. Let’s change those last few lines of the
program to verify that the new position is an empty room before we move the player in there. (Note the
line numbers!)

58 if map_data[new_row][new_column] != ".":
59 print("You can't move that way!")
60 else:
61 # Set the current position to the new position
62 player_row = new_row
63 player_column = new_column

Woo! You’ve written your very own Roguelike10 game!

Problem-solving step: Looking Back.

For the next steps, consider adding some of the following:

• Treasures
• Monsters
• Stats
• Weapons
• Whatever you desire! It’s your game!

Just back to “Understand the Problem” and implement some of those things.

Also, the game looks neater if you clear the screen before printing the map, but unfortunately there’s no
easy way to do this in a cross-platform manner11. But there is a hacky thing we can do.

If your terminal obeys ANSI escape codes12, which is likely, we can send special sequences of characters
to it to clear the screen then home the cursor (move it to the top left).

The magical incantation looks like this:

print("\x1b[2J\x1b[H", end="") # Clear the screen

10https://en.wikipedia.org/wiki/Roguelike
11Well, not at this point in our learning, anyway.
12https://en.wikipedia.org/wiki/ANSI_escape_code

https://en.wikipedia.org/wiki/Roguelike
https://en.wikipedia.org/wiki/ANSI_escape_code

Chapter 8. Lists 71

Go ahead and tuck that up above where you start printing the map and you’ll see the effect. If your terminal
doesn’t support ANSI sequences, you’ll just see some weird characters. Bogus13.

If you really want to get into character graphics, there’s a library you should try: curses14. It allows you
to clear the screen, position the cursor, get input without echoing it to the screen or waiting for RETURN,
output in color, and more.

Although we have enough knowledge to add monsters and treasure and so on, it will be easier to do so
once we learn about dictionaries and objects in future chapters. We have more tools at our disposal!

(Solution15.)

8.15 Exercises
Remember: to get your value out of this book, you have to do these exercises. After 20 minutes of
being stuck on a problem, you’re allowed to look at the solution.

Use any knowledge you have to solve these, not only what you learned in this chapter.

Always use the four problem-solving steps to solve these problems: understand the problem, devise a
plan, carry it out, look back to see what you could have done better.

1. The following code prints out 99:

1 a = [1, 2, 3]
2 b = a
3

4 b[0] = 99
5

6 print a[0]

How can we change only line 2 so that b is a copy of a, causing the program to print out 1 instead?

(Solution16.)

2. Write a loop that prints out the total sum of the following list:

[14, 31, 44, 46, 54, 59, 45, 55, 21, 11, 8, 34, 66, 41]

The sum is 529.

(Solution17.)

3. Take the following list:

[11, 22, 33]

and write one line of Python that changes the list to:

[11, 22, 33, 99]

Then write another line that changes that list to:

[11, 33, 99]

Then, finally, write another line that changes the list to:

13https://www.youtube.com/watch?v=q3fx6TugN7g
14https://docs.python.org/3/howto/curses.html
15https://beej.us/guide/bgpython/source/examples/adv1.py
16https://beej.us/guide/bgpython/source/examples/ex_refval.py
17https://beej.us/guide/bgpython/source/examples/ex_listsum.py

https://www.youtube.com/watch?v=q3fx6TugN7g
https://docs.python.org/3/howto/curses.html
https://beej.us/guide/bgpython/source/examples/adv1.py
https://beej.us/guide/bgpython/source/examples/ex_refval.py
https://beej.us/guide/bgpython/source/examples/ex_listsum.py

Chapter 8. Lists 72

[11, 33, 88, 99]

This exercise should manipulate the same list, not create new lists.

(Solution18.)

4. Create the following list in under 20 characters of Python code:

[1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]

(Solution19.)

5. Using a list comprehension, make a new list from the following that only includes numbers that are
multiples of 5:

[14, 31, 44, 46, 54, 59, 45, 55, 21, 11, 8, 34, 66, 41]

(Solution20.)

6. Using a list comprehension, make a new list from the following that only includes all-uppercase
versions of all words that begin with a consonant.

["alice", "beej", "chris", "dave", "eve", "frank"]

Sample output:

['BEEJ', 'CHRIS', 'DAVE', 'FRANK']

(Solution21.)

7. Write a program that generates a list of lists (2D list) containing a multiplication table up to 12×12.
You should be able to print the result of, say, 7 × 5 like so:

print(multtable[7][5]) # prints 35

(Solution22.)

8.16 Summary
Look at all the stuff we’ve covered in this chapter!

• A brand new data structure to hold lists of information
• Understanding assignments with mutable types
• How to access and change items in a list
• How to modify and copy the list
• How to create new lists of repeating values
• List comprehensions! Wow!
• Lists of lists!

Lists are a powerful tool to add to our arsenal. We’re going to make heavy use of them as our programs
get more complex.

18https://beej.us/guide/bgpython/source/examples/ex_listchange.py
19https://beej.us/guide/bgpython/source/examples/ex_replist.py
20https://beej.us/guide/bgpython/source/examples/ex_listcompx5.py
21https://beej.us/guide/bgpython/source/examples/ex_listcompcap.py
22https://beej.us/guide/bgpython/source/examples/ex_listmult.py

https://beej.us/guide/bgpython/source/examples/ex_listchange.py
https://beej.us/guide/bgpython/source/examples/ex_replist.py
https://beej.us/guide/bgpython/source/examples/ex_listcompx5.py
https://beej.us/guide/bgpython/source/examples/ex_listcompcap.py
https://beej.us/guide/bgpython/source/examples/ex_listmult.py

Chapter 9

Dictionaries

9.1 Objective
• Understand what dictionaries are
• Initialize a dictionary
• Access individual elements in a dictionary
• Check to see if a key is in a dictionary
• Iterate over dictionaries with for
• Use common dictionaries built-in functions
• Construct new dictionaries with dictionary comprehensions
• Build Dictionaries of Dictionaries
• Understand that Dictionaries are Mutable

9.2 Chapter Project Specification
Let’s store some genealogical1 data!

We’ll have several data records associated with each person:

Beej Jorgensen:
Born: 1993 [yes, I'm 29, is my story I'm sticking to]
Mother: Mom Jorgensen
Father: Dad Jorgensen
Siblings: [Brother Jorgensen, Sister Jorgensen, Little Sister Jorgensen]

Mom Jorgensen:
Born: 1970
Mother: Grandma Jorgensen
Father: Grandpa Jorgensen
Siblings: [Auntie Jorgensen]

Dad Jorgensen:
Born: 1965
Mother: Granny Jorgensen
Father: Grandad Jorgensen
Siblings: [Uncle Jorgensen]

1This is all about family trees. Did you know I’m related to Queen Elizabeth II (by marriage)? I’m her mother’s sister’s
husband’s father’s father’s sister’s daughter’s husband’s wife’s (drama!) sister’s husband’s father’s brother’s son’s son’s daughter’s
son’s daughter’s son. For realsies! I’m willing to bet that you’re related to Queen Elizabeth II, as well. That makes us cousins!

73

Chapter 9. Dictionaries 74

(Ok, I hear you saying, “Wait, your mom and dad were both Jorgensens? That’s suspicious. I mean, I’m
not saying, but I’m just saying.” Hold your tongue! I can assure you they’re not related2.)

We want to write an app that will allow you to print out the birthdays of the parents of any given person.

Example:

Enter a name (or q to quit): Beej Jorgensen
Parents:

Mom Jorgensen (1970)
Dad Jorgensen (1965)

So we’ll need some way to store that, and some way to look through the data to get information about
other people who are referenced.

Yes, we could use lists of people and just search through, but there’s a less clunky way we might go about
doing this.

This chapter is all about how we might store such data.

9.3 What are Dictionaries?
Problem-solving step: Understanding the Problem.

Remember how with lists, we could key an index number into the list and get a value out, and how we
could use that same index number to store something in that “slot”?

Was really convenient for storing collections of information that you could index by number, right?

Well, what if you wanted to refer to a slot with something that wasn’t a number? What if you wanted to
use, say, a string, like so?

x = [1, 2, 3]

x["beej"] = 3490 # Not going to work with a list

That makes Python unhappy because "beej" isn’t an integer. And with lists, it wants integers.

But we can get around that limitation with dictionaries, or dicts for short.

Declaring a dictionary is a little bit different, but here’s a simple example to start:

d = {} # Squirrely braces, not square brackets!

d["beej"] = 3490

print(d["beej"]) # 3490

So very similar in usage, though the initial declaration of the variable is different than a list.

With dicts, the value in the square brackets is called the key, and the value stored there is the value.

key value
| |
--+-- ---+---
d["goats"] = "awesome"

You use the key to lookup a value in the dictionary, or to set a value in the dictionary.

The key can be any immutable type (e.g. integers, floats, strings). The value can be any type.
2Except via Queen Elizabeth II, like the rest of us.

Chapter 9. Dictionaries 75

9.4 Initializing a Dictionary
Problem-solving step: Understanding the Problem.

As we saw above, you can initialize an empty dictionary like so:

d = {}

But you can also pre-initialize the dictionary with a number of keys and values:

d = {
"name": "Beej",
"age": 29, # ish
"favorite OS": "windows",
"no really, favorite OS": "linux"

}

That’s the equivalent of setting them by hand, albeit less verbose:

d = {}
d["name"] = "Beej"
d["age"] = 29 # ish
etc.

If you come from a web background, you might have come across JSON3-format data. The Python
dictionary is very similar in format, though not exactly the same.

9.5 Speed Demon
Problem-solving step: Understanding the Problem.

Like lists, dicts are really fast at looking up information. In fact, on average, it takes the same amount of
time to get a value out of a dictionary, regardless of how many items are in the dictionary4.

Keep this fact in mind going forward. We’ll get into more complex problems that can make use of this
feature to keep your programs running quickly. Vroom!

9.6 Does this dict have this key?
Problem-solving step: Understanding the Problem.

If you have a dictionary, it’s nice to be able to check to see if a key even exists.

The secret to doing this is the in statement that will return a Boolean indicating if a key is in a dict.

d = {
"a": 10,
"b": 20

}

if "a" in d:
print(f'key a\'s value is: {d["a"]}')

if "x" not in d:
print('There is no key "x" in "d"')

3https://en.wikipedia.org/wiki/JSON
4Time complexity enthusiasts will recognize this as𝑂(1), or constant time.

https://en.wikipedia.org/wiki/JSON

Chapter 9. Dictionaries 76

There is also a way to get an item out of a dictionary using the .get() method. This method returns a
default value of None5 if the key doesn’t exist.

val = d.get("x")

if val is None: # Note: use "is", not "==" with "None"!
print("Key x does not exist")

else:
print(f"Value of key x is {d[x]}")

You can also detect a non-existent key with try/catch. But that’s a story for another time.

9.7 Iterating over Dictionaries
Problem-solving step: Understanding the Problem.

Remember how you could iterate over all the elements in a list with for? Well, we can do the same thing
with dictionaries. Except, in this case, we’ll be looping over the keys in the dictionary, not the values.

Let’s try it!

d = {
"c": 10,
"b": 20,
"a": 30

}

for k in d:
print(f"key {k} has value {d[k]}")

This gives us the output:

key c has value 10
key b has value 20
key a has value 30

Note that in the latest version of Python, the keys come out in the same order they’ve been added to the
dictionary.

If you want them in another order, there are options:

d = {
"c": 10,
"b": 20,
"a": 30

}

for k in sorted(d): # <--- Add the call to sorted()
print(f"key {k} has value {d[k]}")

And now we have this, where the keys have been sorted alphabetically6.

5If you haven’t seen it before or need a refresher, this is a value that represents “no value”. It’s a placeholder (what we call a
sentinel value) to indicate a no-value condition.

6Or what we call lexicographically sorted. It’s like alphabetical, but on steroids so that it can handle letters, numbers, punctuation
and so on, all of which are all numbers deep down.

Chapter 9. Dictionaries 77

key a has value 30
key b has value 20
key c has value 10

Also, similar to how lists work, you can use the .items() method to get all keys and values out at the
same time in a for loop, like this:

d = {
"c": 10,
"b": 20,
"a": 30

}

for k, v in d.items():
print(f"key {k} has value {v}")

9.8 Common Built-in Dictionary Functionality
Problem-solving step: Understanding the Problem.

You have a number of tools in your toolkit for working with dicts in Python:

Method Description

.clear() Empty a dictionary, removing all keys/values

.copy() Return a copy of a dictionary

.get(key) Get a value from a dictionary, with a default if it doesn’t exist

.items() Return a list-ish of the (key,value) pairs in the dictionary

.keys() Return a list-ish of the keys in the dictionary

.values() Return a list-ish of the values in the dictionary

.pop(key) Return the value for the given key, and remove it from the dictionary

.popitem() Pop and return the most-recently-added (key,value) pair

We already saw use of .get(), earlier, but it can also be modified to return a default value if the key
doesn’t exist in the dictionary.

d = {
"c": 10,
"b": 20,
"a": 30

}

v = d.get("x", -99) # Return -99 if key doesn't exist

print(v) # Prints -99, since key `x` doesn't exist

We’ve already seen a use of .items(), above. If you want to see just all the keys or values, you can get
an iterable back with the .keys() and .values():

d = {
"c": 10,
"b": 20,
"a": 30

}

Chapter 9. Dictionaries 78

for k in d.keys():
print(k) # Prints "c", "b", "a"

for v in d.values():
print(v) # Prints 10, 20, 30

9.9 Dictionary Comprehensions
Problem-solving step: Understanding the Problem.

Remember list comprehensions? If you don’t, pop over there for a quick refresher, because this is the
same thing except for dictionaries.

You can create a dictionary from any iterable that you can go over in a for loop. This is a pretty powerful
way of creating a dictionary if you have the data in another, iterable, form, like a list or an input stream of
something.

Let’s go through a list and store the list value as the key, and the list value times 10 as the value in the
dictionary. And let’s ignore the number 20 in the list, just for fun.

a = [10, 20, 30]
d = { x: x*10 for x in a if x != 20 }

print(d) # {10: 100, 30: 300}

If you have a list of key/value pairs, you can read those into a dictionary pretty easily, too.

a = [["alice", 20], ["beej", 30], ["chris", 40]]
d = { k: v for k, v in a }

print(d) # {'alice': 20, 'beej': 30, 'chris': 40}

9.10 Dictionaries of Dictionaries
Problem-solving step: Understanding the Problem.

Here’s the deal: the value that you store for a given key can be anything!

Well, not like a whale, or Mars, but any data type. So you can store strings, ints, floats, lists, or even other
dictionaries as the value for the dictionary key!

Check out this nested declaration, and check out how we drill down through the dictionary layers to get
to the data:

d = {
"a": {

"b": "Mars! Ha!"
}

}

print(d) # {'a': {'b': 'Mars! Ha!'}}
print(d["a"]) # {'b': 'Mars! Ha!'}
print(d["a"]["b"]) # Mars! Ha!

Nesting dictionaries like this can be a really powerful method of storing data.

Chapter 9. Dictionaries 79

9.11 Dictionaries are Mutable
Problem-solving step: Understanding the Problem.

When you make an assignment copy of a dictionary, it’s copying the reference to the same dictionary, not
making a new one. Just like with lists and anything else.

And this is important, because dictionaries are mutable, just like lists.

d = { "beej": 3490 }

e = d # both e and d refer to the same dict!

e["beej"] = 3491 # modify it

print(d["beej"]) # 3491

If you want to make a copy of a dictionary use one of the following:

d = { "beej": 3490 }

e = d.copy() # make a copy, the preferred way
e = dict(d) # make a copy

That first way is preferred because it’s easier to read, and easy to read code is Happy Code™.

9.12 The Chapter Project
Pop back up top and refresh on the spec if you need to. Let’s break it down!

Problem-solving step: Understanding the Problem.

The goal of the project is to, for a given person, print out their parents’ names as well as their year of birth.

Pretty straightforward, but the devil’s in the details!

Problem-solving step: Devising a Plan.

If we look at a sample record, we can see that a dict lends itself quite well to the data, with keys born,
mother, siblings, etc.

Beej Jorgensen:
Born: 1990 [yes, I'm 29, is my story I'm sticking to]
Mother: Mom Jorgensen
Father: Dad Jorgensen
Siblings: [Brother Jorgensen, Sister Jorgensen, Little Sister Jorgensen]

Not only that, but we can store all of those dicts in another container dict which uses the person’s name
as the key!

tree = { # Outer dict holds records for all the people
"Beej Jorgensen: { # Inner dict holds details for each person

"born": 1990,
"mother": "Mom Jorgensen",
"father": "Dad Jorgensen",
"siblings": [

"Brother Jorgensen",
"Sister Jorgensen",
"Little Sister Jorgensen"

Chapter 9. Dictionaries 80

]
}

}

So that looks like a reasonable approach to storing data. We can just add the other people to the dictionary
at that outermost layer.

Not only that, but we now have part of the problem solved. If the user enters “Beej Jorgensen”, all we
have to do is look that directly up in the outer dict, and then we can print out my parents’ names!

Of course, we’re still missing out on printing their birth years, but let’s tackle the smaller problem first,
and then figure out how to extract that missing data.

We’ll come back to the “Understanding the Problem” step in a while to revisit that.

Problem-solving step: Carrying out the Plan

We’ll start with a simple tree of just a single person. Let’s keep it as simple as possible, and then go from
there.

1 tree = {
2 "Beej Jorgensen": {
3 "born": 1990,
4 "mother": "Mom Jorgensen",
5 "father": "Dad Jorgensen",
6 "siblings": [
7 "Brother Jorgensen",
8 "Sister Jorgensen",
9 "Little Sister Jorgensen"
10]
11 }
12 }
13

And now let’s add some code to get the person’s name, or quit if they enter “q”:

14 done = False
15

16 while not done:
17 name = input("Enter a name (or q to quit): ")
18

19 if name == "q":
20 done = True
21 continue # Jump back to the top of the loop
22

And, finally, let’s print out the person’s name and their parents’ names:

23 record = tree[name] # Look up the record in the outer dict
24

25 mother_name = record["mother"] # Extract parent names from inner dict
26 father_name = record["father"]
27

28 print("Parents:")
29 print(f' {mother_name}')
30 print(f' {father_name}')

Giving this a run, we get some good output!

Chapter 9. Dictionaries 81

$ python3 familytree.py
Enter a name (or q to quit): Beej Jorgensen
Parents:

Mom Jorgensen
Dad Jorgensen

Enter a name (or q to quit): q

We’re still missing the parents’ birth years, but, as I said, we’ll tackle that later.

What happens if we run it with an unknown name? Remember that when you’re testing your code, you
should think like a villain and enter the most unexpected things you can.

Let’s try it with someone it doesn’t know.

$ python3 familytree.py
Enter a name (or q to quit): Arch Stanton
Traceback (most recent call last):

File "familytree.py", line 23, in <module>
record = tree[name] # Look up the record in the outer dict

KeyError: 'Arch Stanton'

Well, that’s ugly. It would be much nicer to print out some kind of error message.

What does the spec say we should do?

…nothing! It says nothing about this case! That’s not useful! The spec is missing information!

True, it is.

Turns out, this is a really common thing when programming. Your boss asks you to implement a thing
but doesn’t fully define what that thing is. It’s not that your boss is bad at this; it’s just that writing down
the exact spec and not leaving anything out is hard.

I promise you that if I asked you to write out the rules to Tic-Tac-Toe7, I’d find something you left out.
(“You never said my ‘X’ could only take up one grid square!”)

The right thing to do at this point is to go back to the creator of the specification and ask exactly what
should happen in this case.

Problem-solving step: Understanding the Problem (again)

“Hey, specification writer! What do we do if the person doesn’t exist in the data?”

Answer: print out an error message like this:

No record for "Arch Stanton"

All right!

Problem-solving step: Devising a Plan (again)

We’re using this code to get a person’s record:

record = tree[name] # Look up the record in the outer dict

but as we see, that throws an exception if name isn’t a valid key in the dict.

How can we handle that? There are a couple of ways. One of them involves catching the exception, but
we’ll talk more about that in a later chapter.

Something we can do that we discussed earlier in this chapter is to use the .get() method on the dict.
This will return the record, or None if the key doesn’t exist in the dict. Then we can test for that and print
out some error messages.

7That’s Noughts and Crosses, to some of you.

Chapter 9. Dictionaries 82

Problem-solving step: Carrying out the Plan (again)

23 record = tree.get(name) # Look up the record in the outer dict
24

25 if record is None: # Use "is" when comparing against "None"
26 print(f'No record for "{name}"')
27 continue
28

29 mother_name = record["mother"] # Extract parent names from inner dict
30 father_name = record["father"]
31

32 print("Parents:")
33 print(f' {mother_name}')
34 print(f' {father_name}')

Now we’re getting pretty close. But we still are missing one big piece: the birth years of the parents.

Getting their names was cake: it was right there in the record for the person we’re looking up. But their
birth years aren’t in there.

How do we get them?

Problem-solving step: Devising a Plan (again)

We have the names of the parents. That’s it.

How do we go from a name to a birth year?

Looks like “Beej Jorgensen” has a birth year listed in his record…

We should add records for “Mom Jorgensen” and “Dad Jorgensen” and then they can have their own birth
years.

But the question still remains: how can we go from the user-entered “Beej Jorgensen” to the birth years
for his parents?

What we’re doing here is trying to tie one piece of data (“Beej Jorgensen”) to other pieces of data (1965
and 1970, his parents’ birth years.)

This is super common in programming. “How do I get from x to y?” We need to find the path.

So let’s see… we have Beej Jorgensen there, with his parents’ names listed.

That’s a start. But given his parents’ names, how do you get his parents’ birthdays?

Yes! You just take their names and look them up in the dictionary!

Except we haven’t added them yet. Let’s do that now. (Note that program line numbers, below, are reset
at this point.)

1 tree = {
2 "Beej Jorgensen": {
3 "born": 1990,
4 "mother": "Mom Jorgensen",
5 "father": "Dad Jorgensen",
6 "siblings": [
7 "Brother Jorgensen",
8 "Sister Jorgensen",
9 "Little Sister Jorgensen"
10]
11 },
12 "Mom Jorgensen": {
13 "born": 1970,
14 "mother": "Grandma Jorgensen",

Chapter 9. Dictionaries 83

15 "father": "Grandpa Jorgensen",
16 "siblings": ["Auntie Jorgensen"]
17 },
18 "Dad Jorgensen": {
19 "born": 1965,
20 "mother": "Granny Jorgensen",
21 "father": "Grandad Jorgensen",
22 "siblings": ["Uncle Jorgensen"]
23 }
24 }
25

And then the main loop logic (unchanged from before):

26 done = False
27

28 while not done:
29 name = input("Enter a name (or q to quit): ")
30

31 if name == "q":
32 done = True
33 continue # Jump back to the top of the loop
34

35 record = tree.get(name) # Look up the record in the outer dict
36

37 if record is None: # Use "is" when comparing against "None"
38 print(f'No record for "{name}"')
39 continue
40

41 mother_name = record["mother"] # Extract parent names from inner dict
42 father_name = record["father"]
43

Except now, when we print out the parents, we have to look up the mother’s and father’s record.

44 # Get the parent records
45 mother_record = tree.get(mother_name)
46 father_record = tree.get(father_name)
47

48 # Get the birth year of the mother; note if missing
49 if mother_record is not None:
50 mother_born_date = mother_record["born"]
51 else:
52 mother_born_date = "missing record"
53

54 # Get the birth year of the father; note if missing
55 if father_record is not None:
56 father_born_date = father_record["born"]
57 else:
58 father_born_date = "missing record"
59

60 print("Parents:")
61 print(f' {mother_name} ({mother_born_date})')
62 print(f' {father_name} ({father_born_date})')

That’s it!

Problem-solving step: Looking Back

Chapter 9. Dictionaries 84

What could we do better? What are the shortcomings of this app?

Look at the dictionary structure we used to store the data. How could that be better? Think of all the cases
that exist in family trees. Sure, we covered the common case, but what about kids who were adopted?
How do we model that? Divorces? Second marriages? It turns out that modeling a family tree is far more
complex than you might originally anticipate.

What if two people have the same name? In a real family tree, it’s entirely likely there could be multiple
Tom Jones8 in the family tree. But since we’re using the name as the key in the dict, and keys have to be
unique, we’re in trouble. Ergo, the name can’t be the key—something unique must be.

One option there is to use a UUID9 as the key, and map that UUID to names somehow. Maybe you have
another dict that, for a given name, stores a list of UUIDs that represent people who have that name. Then
we could ask the user, “Did you mean the Beej Jorgensen who was born in 1971, 1982, 1997, or 2003?”
if there were multiple Beej Jorgensens. (You can create a random UUID by importing the uuid package
and running uuid.uuid4().)

Lots of options for improvement, here!

(Solution10.)

9.13 Exercises
Remember: to get your value out of this book, you have to do these exercises. After 20 minutes of
being stuck on a problem, you’re allowed to look at the solution.

Use any knowledge you have to solve these, not only what you learned in this chapter.

Always use the four problem-solving steps to solve these problems: understand the problem, devise a
plan, carry it out, look back to see what you could have done better.

1. For the following dictionary, print out all the keys of the dictionary:

d = {
"key1": "value1",
"key2": "value1",
"key3": "value1",
"key4": "value1",

}

(Solution11.)

2. For the dictionary in problem 1, print out all the keys and values.

(Solution12.)

3. Given a list of names, write code that converts that list of names into a dictionary that groups names
by their first letter. In the dict, the key should be the first letter of the names, and the value should
be a list of names that start with that letter.

For example, the list:

["Chris", "Annie", "Beej", "Aaron", "Charlie"]

should build into the dictionary (key order doesn’t matter):

8It’s not unusual.
9https://en.wikipedia.org/wiki/Universally_unique_identifier
10https://beej.us/guide/bgpython/source/examples/familytree.py
11https://beej.us/guide/bgpython/source/examples/ex_printkeys.py
12https://beej.us/guide/bgpython/source/examples/ex_printkeysvals.py

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://beej.us/guide/bgpython/source/examples/familytree.py
https://beej.us/guide/bgpython/source/examples/ex_printkeys.py
https://beej.us/guide/bgpython/source/examples/ex_printkeysvals.py

Chapter 9. Dictionaries 85

{
"C": ["Chris", "Charlie"],
"A": ["Annie", "Aaron"],
"B": ["Beej"]

}

I don’t want you to manually convert the list to a dictionary; I want you to write code that does it
for any list of names.

After you construct the dictionary, print out the keys and values in any order.

(Solution13.)

4. Change step 5 to print out the keys in sorted order. And the lists in sorted order after that.

(Solution14.)

9.14 Summary
That was a heckuva chapter, wasn’t it?

When we learned about lists, we learned that you could index data by number. But now with dicts, we
can index data by any constant data type at all, including numbers and strings.

This gives us more flexibility in how we store data and how we look it up.

We learned about accessing and setting elements in a dictionary, how to determine if a key is in a dictionary,
and how to iterate over dictionaries with for.

Not only that, but dicts have a bunch of built-in functionality you can reference to manipulate and access
the data stored within them.

Finally, we saw that since dictionary values can be any type of data, you can have dictionaries of dictio-
naries, even! The only limit is your imagination.

What other kinds of data can you store in dictionaries?

13https://beej.us/guide/bgpython/source/examples/ex_list2dict.py
14https://beej.us/guide/bgpython/source/examples/ex_list2dictsort.py

https://beej.us/guide/bgpython/source/examples/ex_list2dict.py
https://beej.us/guide/bgpython/source/examples/ex_list2dictsort.py

Chapter 10

Functions

10.1 Objective
• Understand what functions are and how they’re useful
• Be able to use built-in functions
• Understand what function arguments are
• Be able to write your own functions
• Be able to write good functions
• Understand the difference between positional arguments and keyword arguments

10.2 Chapter Project Specification
Allow the user to enter the locations of several starships in 3D space.

These should be entered as x,y,z triplets when prompted. When the user enters “done”, stop entering ship
locations.

Enter ship location x,y,z (or "done"): 10,20,30
Enter ship location x,y,z (or "done"): -17,16,50
Enter ship location x,y,z (or "done"): 0,13,30
Enter ship location x,y,z (or "done"): 5,20,-40
Enter ship location x,y,z (or "done"): done

Then print out a grid of the distances between them. The grid’s top row and left column should indicate
the ship number (starting with 0).

Crossing a column with a row should give you the distance between the ships.

Distances should be printed to 2 decimal places in fields of width 8.

We’ll use a variant of the Pythagorean Theorem1 to find the distance between two 3D points.

𝑑 = √(𝑥0 − 𝑥1)2 + (𝑦0 − 𝑦1)2 + (𝑧0 − 𝑧1)2
For each pair of 3D points, we take the difference in the X coordinates squared, plus the difference in the
Y coordinates squared plus the difference in the Z coordinates squared, and then we take the square root
of that whole thing. And that’s the distance between the two points.

Example output (corresponding to the example input, above):

0 1 2 3
0 0.00 33.84 12.21 70.18
1 33.84 0.00 26.42 92.74

1https://en.wikipedia.org/wiki/Pythagorean_theorem#Euclidean_distance

86

https://en.wikipedia.org/wiki/Pythagorean_theorem#Euclidean_distance

Chapter 10. Functions 87

2 12.21 26.42 0.00 70.53
3 70.18 92.74 70.53 0.00

So we can see ship #2 (along the top) is distance 26.42 from ship #1 (along the left). And notice the
diagonal is all 0.00, which makes sense because every ship is zero distance from itself.

Keep this project in mind as we go through the chapter.

10.3 What Are Functions?
You’re about to seriously level up in programming by learning how to do this, and it’s not even that
difficult. Functions are the key to getting away from the toy programs we’ve been doing so far and doing
real programs.

So what are they?

Problem-solving step: Understanding the Problem.

Functions are self-contained pieces of code that you can call that do a specific thing.

Does this sound at all familiar? Because we’ve been doing this the whole time with the built-in print()
function.

Not to be confused with statements like for and if. Know a function because it has parenthesis
right after the name that you can use to pass arguments to the functiona.

aPurists will point out exceptions to this, like with __add__(), but let’s skip that for now.

The print() function has built-in functionality to print things on the screen. Thankfully (really, really)
we don’t have to write that code ourselves. We can just say:

print(23 + 34)

and have print() do all the dirty work of getting us the answer printed to the screen.

We’ve also used the input() function to get a string entered from the keyboard.

name = input("Enter your name: ")

This turns out to be a great way to simplify and organize code. Can you imagine if you had to put all the
code in to print out something on the screen every time you wanted to print something? Much easier to
define the print() function once, and then use it over and over again by calling it.

We have an important principle in computer programming called the DRY principle2 (Don’t Repeat Your-
self). If you can remove as much repetitive code as you can and move it to a function, that makes your
code easier to read and maintain. DRY code is happy code.

Not only can we use functions to make DRY code, we can also use them to organize our code into logical
sections, even if a function is called only one time.

It is clearer to have your functionality in discrete sections that you call in sequence rather than just having
a single huge block of code that does everything

10.4 Using Built-In Functions
Problem-solving step: Understanding the Problem.

Python has a lot of built-in functions that you can use. It’s not necessary to memorize the usage in detail
(you can always look up the details), but it’s a good idea to skim their descriptions just so you can recall
that they exist.

2https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

Chapter 10. Functions 88

We’ve already used print() and input() quite a bit, but there are plenty more. Look them up online3.

Here are some common ones, though this is not an exhaustive list:

Built-in Function Description

abs() Return the absolute value of a number.
bin() Return a string representing the number in binary.
chr() Return a character for the Unicode (and ASCII)

value passed in.
dir() Return a list of methods on this object.
enumerate() Return an iterator over a list of (index, value)

pairs.
filter() Repeatedly run a function on items of a list

filtering some out.
float() Convert a number or string to a floating-point

value.
help() Get help on a data type.
hex() Return the hexadecimal representation of a

number.
input() Get input from the keyboard and return that string.
int() Convert a floating point or string to an integer

value.
isinstance() Return true if an object is an instance of a class.
len() Return the length of an iterable, like a list or string.
map() Run a function on every value in an iterable,

returning the results.
max() Return the maximum of the arguments or of an

iterable.
min() Return the minimum of the arguments or of an

iterable.
ord() Return the Unicode value (code point) for a given

character.
pow() Return a base value raised to an exponent.
print() Print to the console.
range() Return an iterator that runs over a range of values.
reversed() Return an iterator over a reversed version of the

argument.
round() Round a number to the nearest whole number.
sorted() Return a sorted version of an iterable.
str() Convert a value to a string.
sum() Return the sum of all arguments and/or of an

iterable.
super() Get access to an object’s superclass.
zip() Merge parallel lists into a dictionary.

These are all available for use at any time in your program.

10.5 Arguments

“Oh look, this isn’t an argument.”

“Yes it is.”

“No it isn’t. It’s just contradiction.”

“No it isn’t.”
3https://docs.python.org/3/library/functions.html

https://docs.python.org/3/library/functions.html

Chapter 10. Functions 89

—Excerpt from Monty Python’s Argument Clinic sketch

Problem-solving step: Understanding the Problem.

When you call a function, the things you put in the parentheses are called the arguments to the function.
Arguments are separated by commas.

print(2) # 1 argument
print(2, 3) # 2 arguments
print(2, 3, 4) # 3 arguments
print() # 0 arguments

The arguments are the way you can pass data into a function to have it operate on that data to produce a
result.

We refer to them by number, as well. “Pass the number of goats in as the second argument to the function.”

Functions often take a specific number of arguments. But, as we see above with print(), they can take
variable numbers of arguments, too.

10.6 Writing Your Own Functions

“What do you like most about hacking?”

“The power.”

—A good friend of mine trolling a reporter at DEFCON 2a

ahttps://www.defcon.org/html/defcon-2/defcon-2.html

The power. This is where we fly. Writing your own functions. This is where we get to DRY our code,
organize it better, and make it more readable overall.

Problem-solving step: Understanding the Problem.

All programmers use their own functions heavily, and to great effect.

Let’s say we want to write a program that adds 13 to a number, and then divides the resultant sum by 7.

No problem. We got this. Let’s do it with 30.

print((30 + 13) / 7)

Great! Oh, and we also need it for 8, 19, 21, 37, 402, 516, 1024, and 3490.

OK. Still no problem.

print((30 + 13) / 7)
print((8 + 13) / 7)
print((19 + 13) / 7)
print((21 + 13) / 7)
print((37 + 13) / 7)
print((402 + 13) / 7)
print((516 + 13) / 7)
print((1024 + 13) / 7)
print((3490 + 13) / 7)

Great! Oh, did I say “divide by 7”? I’m sorry, that should be “multiply by 7”.

And here we get a taste of why DRY code is good code. Since the spec changed4, we have to go back and
modify all those lines of code to make them right.

4This happens all the time in development.

https://www.defcon.org/html/defcon-2/defcon-2.html

Chapter 10. Functions 90

If only we hadn’t repeated ourselves, we might have been able to only change it in one place. This would
also be better because we wouldn’t be taking the risk of missing a place we should have changed the code.

But how to do it?

With… FUNCTIONS! Let’s write a function to do that math and return the result. Then we can just call
it over and over, like this:

print(do_the_math(30))
print(do_the_math(8))
print(do_the_math(19))
print(do_the_math(21))
print(do_the_math(37))
print(do_the_math(402))
print(do_the_math(516))
print(do_the_math(1024))
print(do_the_math(3490))

Sure, we’re repeating the function name do_the_math(), but we’re not repeating the actual mathematical
expression, itself, which is what matters.

But how do we define the function do_the_math()?

We use the def statement, like this:

1 def do_the_math(x):
2 result = (x + 13) * 7
3

4 return result
5

6 answer = do_the_math(30)
7 print(answer)

The indented stuff after the def is called the function body. That’s where all the work gets done.

There’s a lot of stuff to unpack here, so let’s take it nice and slow.

Line 1: defining the function
When we say def do_the_math, we’re telling Python, “Hey, I’m making a brand new function from
scratch called do_the_math.

The part in the parentheses is a list of what we call parameters. This describes what can be passed to the
function. The actual values we pass to the function are called arguments.

In this case, we can pass a single argument to our function. It will be represented inside the function by
the variable x.

When we call the function on line 6, x will be initialized with the argument, just as if it had been assigned
to. So in this example, x will be assigned 30, because that’s the argument we passed to the function for
that call.

In particular, whatever you pass as an argument will also be referred to by the corresponding vari-
able in the parameter list.

Remember: you pass in arguments that get assigned into parameters.

A parameter is a special type of local variable, one that comes pre-initialized with whatever value we
passed in as an argument. We’ll get into their story on line 2.

Chapter 10. Functions 91

Line 2: Compute the result
You can see on line 2 that we take the parameter x and feed it into the equation our boss tasked us with.
(They told us to change it to multiply by 7, remember?)

And then Python does that math and stores that into the variable result.

Now that variable result is special. It’s what we call a local variable. Because it’s used inside the
function, it’s only visible inside the function. Once the function returns (more on that below), the value
in the local variables vanish forever.

You can name the local variables anything you want, even if you’ve used that same name in another
function! Each local variable is isolated from the rest of the world and only exists within its own function.

And as I mentioned above, the parameters are also local variables. They just have the added property that
they are assigned the values of the arguments automatically.

Line 4: Return the result
A function can optionally return a value. You know how arguments are a way to pass data into a function?
The return value is a way to pass data back out of the function to the caller.

Back where the function is called, you can think of the function call as having the return value. Then you
can do things like assign it into a variable.

Line 6: Capture the returned result in a variable
We call our function, and we take the return value from that function and assign it into the variable answer.
Then we can do things with it, like print it out on line 7.

Problem-solving step: Looking Back.

In the function as written, above, we use a lot of variables to help demonstrate a number of concepts and
ideas surrounding functions.

But in reality, a dev would probably simplify the above code to:

1 def do_the_math(x):
2 return (x + 13) * 7
3

4 print(do_the_math(30))

Compare the two until you are convinced they are equivalent.

10.7 Multiple Return Values
Problem-solving step: Understanding the Problem.

You can always return a list or a dict or anything from a function, but you can also return two values and
assign them to different variables.

Function that returns the argument times 10, and divided by 10

def timesdiv10(x):
return x * 10, x / 10

a, b = timesdiv10(100)

print(a, b) # 1000 10

Or you can assign the result to a single variable. The result will be a tuple, which is a read-only list that
you can access with square bracket notation:

Chapter 10. Functions 92

a = timesdiv10(100)

print(a[0], a[1]) # 1000 10

Magic!

10.8 What Makes a Good Function
Problem-solving step: Understanding the Problem.

The biggest rule is “do one thing and do it well”.

It’s more of a guideline than a rule because you’re the boss when it comes to programming.

But it’s a great guideline that should be followed when you can.

The biggest things you’ll use functions for are:

• Mathematical equations
• Anything that happens repeatedly
• Breaking up code into smaller, self-contained sections

Let’s talk about that last item more, since it’s less obvious.

Very frequently—almost always—you’ll start with a series of steps you need to perform to solve the
problem, like this:

While we still have data to process
Process the data
Output the data

And then you go in and fill in all the code for processing the data and outputting the data.

But that could make for a bulky, hard-to-read while loop. It might be better to code it up like this:

while d in data:
d = process(d)
output(d)

and the write the functions process() and output() to operate on the data that is passed into them.

This makes the logic of the loop really easy to read. And being easy-to-read is king (or queen, if you
prefer).

If you find you have some large amounts of code that are getting deeply-nested, it might be time to break
them out into functions, even if you only call those functions from that single place.

Knowing when to break up code into functions is more of an art than a science. If you start feeling like
your code is remotely unwieldy, consider what it might look like split into different functions. If you like
it more, do it!

10.9 Positional Arguments versus Keyword Arguments
Problem-solving step: Understanding the Problem.

We’ll talk more about this in detail later, but function arguments can be split into these two broad classes
in Python: positional and keyword.

Positional arguments are the arguments that have to occur at certain positions in a function call.

For instance, if we want to compute 1412, we need to pass those two arguments in a specific order to the
math.pow() function, which expects the base to be first and the exponent to be second:

Chapter 10. Functions 93

math.pow(14, 12) # 56693912375296.0

If you put the 12 first, you get a different answer. These are positional arguments.

But for some functions, after the positional arguments, you can specify additional keyword arguments.
These are arguments that are identified by a certain name.

For example, normally print() puts a newline at the end of the string. But you can override this behavior
with the end keyword argument by telling print() to put nothing (an empty string) at the end of the line:

Together, prints "Beej" on a single line

print("Be", end="")
print("ej")

Notice how we had to identify the keyword argument by name.

If you’re looking through documentation, youmight find something that looks like this (the documentation
for print()):

print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False)

Ignoring the *objects for now, look at all those keyword arguments… in the docs, they have = followed
by some value. This indicates the default value if you don’t specify one otherwise. In other words, they’re
optional keyword arguments.

You can see that print() ends each line with a newline \n unless we tell it to end the line with some
other string.

For now, it’s enough to know that these exist and how to call them. Later on, we’ll talk about how to write
our own.

10.10 Interlude: Evaluation Strategies
If you don’t want to read this section, it’s OK to skip. But it’s more fun if you read it.

Different languages have different behaviors when it comes to passing arguments to functions.

Some of them make copies of the values. Some of them just make it so the parameter name is an alias for
the argument name. Some of them give you the option through some keyword.

How the programming language does this is called it’s evaluation strategy5.

Three very common ones are:

• Call by Sharing: This is what Python does. When you call a function, the parameters become
references to the same objects as their corresponding arguments. This means that if, inside the
function, you change the thing the parameter refers to, you’ll see that change reflected out in the
caller. However, if you assign a new value into a parameter, you will not see the change.

def foo(x):
Modify the passed-in object. Caller will see this change.
x[1] = 99

Assign a new list into x. The caller will _not_ see this change.
x = [4, 5, 6]

a = [1, 2, 3]

5https://en.wikipedia.org/wiki/Evaluation_strategy

https://en.wikipedia.org/wiki/Evaluation_strategy

Chapter 10. Functions 94

foo(a)
print(a) # [1, 99, 3]

• Call by Value: a copy of the argument is made and stored in the parameter. The C programming
language6, among others, uses this one. (Sometimes people say Python uses Call by Value, but
this is technically not accurate since parameters are not copied when they are passed in; only the
reference to the argument is copied. You can make Python simulate Call by Value by making a copy
of the parameter when calling the function.)

Simulating call-by-value in Python

def foo(x):
Modify the passed-in object. The caller would normally see this
change, but if they called it with a copy, only the copy will
be affected.
x[1] = 99

a = [1, 2, 3]

Simulate call-by-value by making a copy
foo(a.copy())

print(a) # [1, 2, 3]

• Call by Reference: the parameter effectively becomes an alias for the variable name passed
in as the argument. Anything you do to the parameter you effectively do to the argument,
including assigning it some other value. Example languages Fortran7, C++8 (usually by value,
but can be made by reference). (Sometimes people say Python uses Call by Reference, but
this is technically not accurate since you can’t assign new values to parameters and see that
reflected in the argument.)

Here’s a quick summary between them.

Note: In the following table, “Can modify item in caller” means that if you have a variable in the caller
that refers to a thing, changes to the thing in the function will be reflected in the caller’s variable.

“Parameter reassignment affects caller” means that if you assign into a parameter variable (i.e. change the
parameter to refer to a completely different thing) the argument variable will also change.

Can modify item in caller Parameter reassignment affects caller

Call by Sharing Yes No
Call by Value No No

Call by Reference Yes Yes

Now, I’ve seen people be fast and loose with these descriptions when it comes to Python, so don’t hold
them to it. In my opinion, from the above three items, Call by Sharing is the most accurate. Call by
Reference is the second-most.

10.11 The Chapter Project
Problem-solving step: Understanding the Problem

It’s that time! If you need a refresher, pop back up to the top and check out the spec.

So we want to do a couple of things:
6https://en.wikipedia.org/wiki/C_(programming_language)
7https://en.wikipedia.org/wiki/Fortran
8https://en.wikipedia.org/wiki/C%2B%2B

https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/C%2B%2B

Chapter 10. Functions 95

1. Read in a list of starship positions.
2. Print out a grid of distances between each ship.

The positions are entered as X, Y, Z coordinates (until the user enters “done”).

The distances are computed with the distance formula variation of the Pythagorean Theorem.

A grid of distances is printed. There should be ship numbers along the axes.

Problem-solving step: Devising a Plan

We already have a bit of a plan, don’t we? We listed it right up there.

1. Read in a list of starship positions.
2. Print out a grid of distances between each ship.

Don’t look now, but these would make a great couple of functions. Sure, we could stick them all in one
big main routine, but it’s way more logical and easier to read if we make them their own functions.

We could have one function read the list of positions and return it.

And we could take that returned list and pass it into another function to print the grid.

locations = get_ship_locations()
print_grid(locations)

We’re taking a _ top-down_ approach, here. Starting with the big pieces of logic and then implementing
them as we go down.

In fact, let’s simplify the problem, and just start like this:

locations = get_ship_locations()
print(locations)
#print_grid(locations)

That way we can just do one bit and make sure it’s working.

Fun Motto Fact: Get something working as quickly as possible, no matter how much a piece of
the project it is.

Problem-solving step: Understanding the Problem

For getting the ship locations, looks like we want to have the user enter an X, Y, Z coordinate. Then we
want to split that into a list of numbers. And we need to make sure they are int type—remember that
input() returns a string, so we’ll have to convert them to int.

And we repeat that until the user enters “done”.

Problem-solving step: Devising a Plan

Looping until the user enters “done” is a solved problem. We’ve done that a few times now. Just make a
variable for the while() condition, and then set it when the user enters “done”.

Otherwise, we have to split the string up into a list of 3 numbers, splitting on the comma. Remember how
to do that?

Yes, that’s right (or no, not right, if you don’t remember), it’s the split() string method. Example:

"1,2,3".split(',') # produces list ["1","2","3"]

But that’s not enough. As we noted, we need to convert that list from a list of strings to a list of numbers.
Remember how to convert a string to a number? Yes, with the built-in int() function!

int("2") == 2 # True!

So we can loop through our list of strings and convert them to ints.

Chapter 10. Functions 96

And then we’ll have a list of 3 ints, representing the X, Y, Z coordinates of a single ship. Of course, the user
is going to enter any number of ships, and we’ll have to keep all those lists of coordinates somewhere…
where?

It’s almost like we’ll need a list for all those lists. A list of lists! Why not? We made some of those in the
lists chapter, right?

So we add the new X, Y, Z list to the end of a master list that holds all the coordinates.

Then we can return that master list to be used later when we print the grid.

Let’s code!

Wait—you’re right—we haven’t finished the entire plan for the whole project. True. But that’s okay. We
completed enough devising of a plan to do the first part of the project.

And this is one of the beautiful things about functions. We’ve split the problem up so nicely that we
can implement different parts of it completely independently! In fact, if you have a programming
pal, you could get them to write the print_grid() function at the same time you were writing the
get_ship_locations() function!

Problem-solving step: Carrying Out the Plan

Let’s get coding!

def get_ship_locations():
"""
Ask the user to enter a number of X, Y, Z ships coordinates.
Returns a list of all the coordinates.
"""

done = False # True when the user asks to be done
locations = [] # Master list of all ship positions

while not done:
xyz = input('Enter ship location x,y,z (or "done"): ')

if xyz == "done":
done = True

else:
Get a list of the x,y,z coordinates
xyz_list = xyz.split(',')

Convert to integers
for i, v in enumerate(xyz_list):

xyz_list[i] = int(v)

Build the master list
locations.append(xyz_list)

return locations

locations = get_ship_locations()
print(locations)
#print_grid(locations)

If we give that a run, we see something like this:

Enter ship location x,y,z (or "done"): 1,2,3
Enter ship location x,y,z (or "done"): 4,5,6
Enter ship location x,y,z (or "done"): done

Chapter 10. Functions 97

[[1, 2, 3], [4, 5, 6]]

There’s our list of lists holding the ships’ coordinates! It’s ready to feed into the print_grid() function.
But first, we’d better think about that for a bit.

One more thing: if you were looking closely, you saw the big multiline string at the beginning of the
function describing what the function does. This is called a doc string and it’s a comment that gives
overall information about the function. Automatic documentation generators can extract these and build
documentation for you, just like you can get with the help() function in the REPL.

Problem-solving step: Understanding the Problem

All righty. What do we need to do for this second part of printing out the grid of distances between the
ships?

There are sort of three big pieces here.

• We need to print out a grid.
• We need the first row and first column to list out ship numbers so we can cross-reference.
• We need to compute the distance and print that.

Problem-solving step: Devising a Plan

Let’s simplify a bit first. Instead of worrying about computing the distance, let’s just concentrate on the
grid. We’ll just put the bogus number of 99.99 in for all the inter-ship distances.

Protip: When putting in bogus data, make sure it’s obviously bogus so that obviously people
obviously know they must obviously replace this with real data before the product ships.

And to simplify even further, let’s forget about the ship numbers in the first row and first column. We can
add those in later. Remember: it’s good to identify the minimum independent piece you can implement
next and test that it’s working.

We know how many ships we have—it’s the length of the master list of ship coordinates.

If we have n ships, we’ll need and n by n grid to be displayed to show all the distances between all of
them. But how? Think back to the loops chapter…

You can do it with a nested loop. The outer one goes for n rows, and the inner one goes for n columns.

For printing the number with 2 decimal places in a field of width 8, you can use a f-string with some
special formatting specifiers, for example:

distance = 99.99
print(f'{distance:8.2f}) # prints " 99.99"

All righty! Let’s print some stuff!

Problem-solving step: Carrying Out the Plan

def print_grid(locations):
"""Print a grid of ship-to-ship distances."""

num_ships = len(locations)

for i in range(num_ships):
for j in range(num_ships):

dist = 99.99
print(f'{dist:8.2f}', end="")

print()

locations = get_ship_locations()
print_grid(locations)

Chapter 10. Functions 98

Running that gives:

Enter ship location x,y,z (or "done"): 1,2,3
Enter ship location x,y,z (or "done"): 4,5,6
Enter ship location x,y,z (or "done"): 7,8,9
Enter ship location x,y,z (or "done"): done

99.99 99.99 99.99
99.99 99.99 99.99
99.99 99.99 99.99

Hey, a nice 3x3 grid for our 3 ships!

Next, let’s put the ship row number just to the left of each row. Just editing the for-loop here:

for i in range(num_ships):
print(f'{i:8}', end="") # <-- add this
for j in range(num_ships):

dist = 99.99
print(f'{dist:8.2f}', end="")

print()

We printed it in field width 8 just for consistency with the distance numbers. Output is now:

0 99.99 99.99 99.99
1 99.99 99.99 99.99
2 99.99 99.99 99.99

Which is good! Now we just need a row on the top. How about another loop before everything else to
print out that row?

Add this loop:
for i in range(num_ships):

print(f'{i:8}', end="")
print()

for i in range(num_ships):
print(f'{i:8}', end="")
for j in range(num_ships):

dist = 99.99
print(f'{dist:8.2f}', end="")

print()

And we get this:

0 1 2
0 99.99 99.99 99.99
1 99.99 99.99 99.99
2 99.99 99.99 99.99

Er, well, that’s almost right. The top row is shifted one column left. We need to stick 8 blank spaces in
before it to scooch it over. So let’s just do it, using string multiplication to make us 8 spaces:

print(" " * 8, end="") # <-- Add this

for i in range(num_ships):
print(f'{i:8}', end="")

print()

Chapter 10. Functions 99

And now we have this:

0 1 2
0 99.99 99.99 99.99
1 99.99 99.99 99.99
2 99.99 99.99 99.99

which is looking right on. Except that all the distances are listed as 99.99. Let’s get that out of there and
replace it with the real distance between the ships.

Problem-solving step: Devising a Plan

Distance! We see the distance formula up there at the top, repeated here:

𝑑 = √(𝑥0 − 𝑥1)2 + (𝑦0 − 𝑦1)2 + (𝑧0 − 𝑧1)2
How do we turn that into code?

We could use math.sqrt() to get the square root, and math.pow() to square the numbers.

Another option is to compute, say, the difference in the X coordinates and then multiply that result by
itself to square it (since 𝑥 × 𝑥 =x^2$).
Let’s code them both and then use the one you like best.

Problem-solving step: Carrying Out the Plan

Here’s computing the distance between points p0 and p1 (both of which are lists of X,Y,Z triples) using
math.pow():

d = math.sqrt(
math.pow(p0[0] - p1[0], 2) + # difference in Xs
math.pow(p0[1] - p1[1], 2) + # difference in Ys
math.pow(p0[2] - p1[2], 2) # difference in Zs

)

And here’s option two:

dx = p0[0] - p1[0] # difference in the Xs
dy = p0[1] - p1[1] # difference in the Ys
dz = p0[2] - p1[2] # difference in the Zs

d = math.sqrt(dx*dx + dy*dy + dz*dz)

Which do you prefer? Both should give equivalent answers.

Now, sure, we could just throw that equation in the middle of our code, but this is actually ripe to be made
into its own function! If we do that, we can reuse it easily later, should we ever want to. Let’s wrap it up
and add it to our file:

“‘ .{py} def dist3d(p0, p1): “ “ “Return the Euclidean distance between 2 3D points.” “ ”

Compute the difference in the Xs, Ys, and Zs
dx = p0[0] - p1[0]
dy = p0[1] - p1[1]
dz = p0[2] - p1[2]

Compute the distance. (Remember that multiplying a number by
itself is the same as squaring the number.)
return math.sqrt(dx*dx + dy*dy + dz*dz)

Chapter 10. Functions 100

And then we can mod our code where we hardcoded that `99.99` and have it
call the distance formula instead! We just need to pass in the two
ships' locations---one is represented by the column number, and the
other by the row number:

``` {.py}
for i in range(num_ships):

print(f'{i:8}', end="")
for j in range(num_ships):

dist = dist3d(locations[i], locations[j]]) # <-- Mod here
print(f'{dist:8.2f}', end="")

print()

And there we have it!

(Solution9.)

10.12 Exercises
Remember: to get your value out of this book, you have to do these exercises. After 20 minutes of
being stuck on a problem, you’re allowed to look at the solution.

Use any knowledge you have to solve these, not only what you learned in this chapter.

Always use the four problem-solving steps to solve these problems: understand the problem, devise a
plan, carry it out, look back to see what you could have done better.

1. Write a program to input numbers repeatedly until the user types “done”. Keep track of all the
numbers in a list.

Print out the maximum value the user entered using built-in functions.

(Solution10.)

2. Write a function that takes an integer between 0 and 9 as an argument. It should return a string that
corresponds to the English word for that number. For example, if the argument is 3, the function
should return "three".

(Solution11.)

3. Write a function that accepts the mass of two planets and the distance between them (for a total of
3 arguments) and returns the force between them.

Use Newton’s Universal Law of Gravitation to calculate the force 𝐹 :

𝐹 = 𝐺𝑚1𝑚2
𝑟2

In mathematical notation, to variables next to each other like𝑚1𝑚2, above, indicate multiplication.

And for 𝑟2, a simple equivalent is 𝑟 × 𝑟.
So we can convert that whole equation to:

F = G * (m1 * m2) / (r * r)

where m1 is the mass of one planet, m2 is the mass of the other planet and r is the distance between
them.

So far so good.

But what’s G? It’s the gravitational constant:

9https://beej.us/guide/bgpython/source/examples/shipdist.py
10https://beej.us/guide/bgpython/source/examples/ex_max.py
11https://beej.us/guide/bgpython/source/examples/ex_ennum.py

https://beej.us/guide/bgpython/source/examples/shipdist.py
https://beej.us/guide/bgpython/source/examples/ex_max.py
https://beej.us/guide/bgpython/source/examples/ex_ennum.py


Chapter 10. Functions 101

𝐺 = 6.67430 × 10−11

That’s written in scientific notation, but we can do the same thing in Python:

G = 6.67430e-11

That should be enough to go on. Write the function and call it with a variety of different values.
Here are some sample values so you can see if your code is working:

m1 m2 r result

10 20 30 1.48317e-11
10 40 30 2.96635e-11

100 5 10 3.33714e-10

(Solution12.)

10.13 Summary
Functions are a super-important part of programming and a highly valuable tool to have at your disposal.

You can use them to break up code into smaller, more manageable pieces. You can also use them to create
standalone, reusable pieces of code.

Python comes with a pile of built-in functions, and it pays to know what they are (so you don’t reinvent
them yourself!)

Finally, you also learned that function arguments come in two flavors: positional and keyword. We’ll
revisit more of that topic later.

But now: well-deserved break time!

12https://beej.us/guide/bgpython/source/examples/ex_grav.py

https://beej.us/guide/bgpython/source/examples/ex_grav.py


Chapter 11

Classes and Objects

11.1 Objective
• Learn what classes and objects are useful for
• Understand the relationship between classes and objects
• Be able to declare a class
• Be able to use that class to instantiate objects
• Understand that objects are mutable
• Understand the relationship between objects and None
• How to test to see if an object has an attribute or not

11.2 Chapter Project Specification
As you go through the chapter, remember this specification and think about how we might use the new
ideas in this chapter to implement it. This can absolutely be implemented without using the material in
this chapter, but the goal is to implement it using the info

We want to store data for a number of theaters and the movies that are being shown at those theaters.

Each movie has:

• A title (string)
• A duration (integer, minutes)
• A genre (string)

Each theater has:

• A name (string)
• A list of movies that are showing at the theater (list)

The output should look similar to this, depending on your theater names and movies:

McMenamin's Old St. Francis Theater is showing:
Star Wars (scifi, 125 minutes)
Shaun of the Dead (romzomcom, 100 minutes)

Tin Pan Theater is showing:
Shaun of the Dead (romzomcom, 100 minutes)
Citizen Kane (drama, 119 minutes)

Tower Theater is showing:
Star Wars (scifi, 125 minutes)
Shaun of the Dead (romzomcom, 100 minutes)
Citizen Kane (drama, 119 minutes)

Note that multiple theaters might be showing the same movie title. Avoid duplicating the movie data as
much as possible. (Remember: Don’t Repeat Yourself!)

102



Chapter 11. Classes and Objects 103

Stretch goal: also store the per-theater showtimes for each movie at that theater.

11.3 What Problem Are We Even Trying To Solve?
Problem-solving step: Understanding the Problem.

Let’s first learn about the problem we’re trying to solve, and then let’s take a look at how classes and
objects can help us solve it.

Okay, I said “problem”, but it’s actually multiple problems. Let’s start with the easier one.

Okay, I said “easier”, but really they’re the same.

Get on with it!

Let’s pretend you have a game where you have a starship that has multiple attributes. For example,
it might have two attributes: XYZ coordinates in 3-space (e.g. [10, 20, 30]), and a ship name (e.g.
"USS Enterprise").

These two pieces of information are clearly related. They apply to one single instance of a starship.

If we have multiple starships in the universe, they’ll each have their own names and coordinates.

So far so good?

Now… how do we store that data with what we know so far?

Well, we have lists, so let’s try with those. We’ll have three starships with different names and different
locations:

ship_location = [
[10, 20, 30],
[-10, 20, -30],
[10, -20, 30]

]

ship_name = [
"MCRN Tachi",
"Red Dwarf",
"USCSS Nostromo"

]

And then we can access ship #1 like this:

print(ship_name[1])
print(ship_location[1])

So we have two lists, one for name and one for location1.

It works, but it’s a bummer to have to maintain two (or more) lists this way. If we ever added a ship, we
have to be sure we add all the information to all the lists and make sure things don’t get out of order. It’s
easy to make a mistake and get the lists out of sync.

What would be nice is if we could bundle all the information about one single ship into one single object
that held the information about just that one ship. Other ships would be represented by other objects. And
then we’d have a list of those objects—just one list to maintain!

1This technique is called parallel arrays or, in the case of Python, parallel lists. It’s not a popular technique today, having been
made obsolete by the very thing we’re talking about in this chapter.



Chapter 11. Classes and Objects 104

11.4 What are Classes and Objects?
Problem-solving step: Understanding the Problem.

What we’re starting to delve into here is the world of Object-Oriented Programming. To discuss every-
thing about it would definitely be information overload, so we’re just going to start with the basics here,
and revisit some of the concepts later.

A bit of terminology here, following up on the starship example from above.

First of all, we’re going to construct new starship objects that hold all the information about a single ship.

When the object is constructed, it is done based on a blueprint. We call this blueprint a class.

So we’re going to define a blueprint for a starship in a class, and then we’re going to build multiple,
different starships based on that class.

Let’s do this as simple as possible to start. It’s not going to be a common way of doing things, but it’s a
place to get your feet wet. We’ll fix it soon.

First of all, we’ll define a new class. Remember, this is just the blueprint for starships—it’s not a starship
itself.

Class names use camel case2 by convention. Let’s define that starship class!

class StarShip:
pass

…that’s it? What’s that pass in there?

Okay, you got me. I did say we were going to start simple (and not quite Right), in my defense. What we
have there is a class StarShip, except it’s like a blank blueprint. There’s nothing in it.

The keyword passmeans “do nothing” in Python. It’s just there to indicate to Python that there’s no body
inside this class.

Random Terminology Facts: We also say a starship object is an instance of the StarShip class.

Constructing a new starship object is also referred to as instantiating the object from the class.

Let’s go on to make a couple of objects from the blueprint.

class StarShip:
pass

s0 = StarShip()
s1 = StarShip()
s2 = StarShip()

By putting parens after the class name, we’re telling Python that we are creating a new starship object
from the StarShip class. In fact, we made three of them and saved a reference to each in s0, s1, and s2.
Of course, none of them have names or locations, but we’ll remedy that shortly.

If we print one, we get something like this:

print(s1) # <__main__.StarShip object at 0x7fa11828c8e0>

Not so pretty. But we’ll make that better soon, as well.

11.5 Making Different StarShips
Problem-solving step: Understanding the Problem.

2https://en.wikipedia.org/wiki/Camel_case

https://en.wikipedia.org/wiki/Camel_case


Chapter 11. Classes and Objects 105

In the previous example, all our starship objects were identical and contained no information.

What we need is a way to pass that information in when the starships are constructed.

We do this by defining a special function inside the class.

Another Fun Terminology Fact: functions declared inside classes are called methods.

This special function is always named __init__() (with the dunders) and is called the constructor.

Let’s add a constructor to our StarShip class that allows us to pass in a ship name when the ship is
constructed:

class StarShip:
def __init__(self, shipname): # The constructor

self.name = shipname

s0 = StarShip("MCRN Tachi")
s1 = StarShip("Red Dwarf")
s2 = StarShip("USCSS Nostromo")

Whoa, now… that’s a lot of hard-to-read punctuation3 to sift through.

And there’s that crazy self parameter to the function, whatever that means!

Let’s start with self4. This is one of the hardest concepts to grok about in this chapter, so we’ll spend
some time on it.

Remember how the class is the blueprint, and the objects are made from that blueprint?

And how after they’re constructed, you get a reference back to that newly-minted object? (These are the
references we were storing in s0, s1, and s2.)

Well, what about the object that’s being constructed right now inside the __init__()method? It already
exists but isn’t fully initialized yet. But inside the constructor, we have a reference to that object that is
being built right now. And that reference is in self.

self means “the object that this method is operating on”.

What’s weird is that when we instantiated the starships, we only passed one argument to __init()__.

s0 = StarShip("MCRN Tachi")

When clearly __init__() has two parameters: self and name. What gives?

def __init__(self, shipname): # The constructor

Doesn’t the number of arguments need to match the number of parameters?

It does! But Python’s doing something sneaky behind your back, here. When a method has been called for
a particular object, Python automagically fills in the first parameter with the object that is being operated
on. We don’t have to worry about it.

Python then takes the arguments we did pass and tacks them on after that.

Let’s take a look at that constructor again:

class StarShip:
def __init__(self, shipname): # The constructor

self.name = shipname

3In fact, I think the choice to use all those underscores in __init__() is one of the few bad design choices in the language.
4A lot of other languages use the variable name this instead of self.



Chapter 11. Classes and Objects 106

s0 = StarShip("MCRN Tachi")

This is a really common pattern, so let’s make sure we understand what’s going on here. In particular,
there’s a weird dot after self. What does that mean? But before we get there, let’s look at shipname.

When we create our new starship s0, we pass in the name "MCRN Tachi". This calls the constructor
__init__().

Python automatically puts a reference to the object that’s now being constructed into self. And
then it copies the string "MCRN Tachi" to the shipname parameter of the function. So shipname is
"MCRN Tachi".

And now we’re to the guts of the thing. self.name? The saga continues!

11.6 Attributes
Problem-solving step: Understanding the Problem.

Objects have variables attached to them, and we call these attributes5.

Attributes are qualities that an object possesses—what things it has. For example, a starship would possess
a name. In other words, a starship would have a name attribute.

And we refer to these attribute by using the dot operator (.).

When we have a line like this:

self.name = shipname

We’re saying “change the name attribute on this starship object to be the same as the shipname parameter
that was passed into this method”.

This is how we take the ship name that was passed in as an argument and attach it to the newly constructed
object! We save a reference to the name in an attribute on the object!

Note that I named shipname differently than ship deliberately. (I did this to show that they could be
different, but also to avoid confusion when looking at the example.) But it’s far more common to just
name them the same thing. This is OK since self.name, the attribute on self, is different than name,
the parameter.

Like so:

class StarShip:
def __init__(self, name): # The constructor

self.name = name

11.7 Using Attributes
Problem-solving step: Understanding the Problem.

Now let’s add one more thing to our starships: their location.

Instead of passing the location into the constructor, let’s just initialize it to location [0,0,0] right off the
bat. Then we can manually set it later.

class StarShip:
def __init__(self, name): # The constructor

self.name = name
self.location = [0, 0, 0] # <-- Add this

5Technically, even the methods are attributes, but we’ll get into the pedantic details another time.



Chapter 11. Classes and Objects 107

All ships will now start at [0,0,0] because that’s what the blueprint says they’ll do.

And we can print it! We’ll access the values in those attributes by using the dot operator on s0!

s0 = StarShip("MCRN Tachi")

print(s0.name) # MCRN Tachi
print(s0.location) # [0, 0, 0]

But wait! There’s more! That’s not all!

You can also set values!

print(s0.name) # MCRN Tachi

s0.name = "Rocinante"

print(s0.name) # Rocinante

And we could modify the location of the ship this way, as well:

s0.location[1] = 99

print(s0.location) # [0, 99, 0]

This is important! Even though we’re changing the values for the attributes of s0, the attributes of the
other objects (like s1 and s2) remain unchanged! (Until we explicitly change them.)

We’ve successfully bundled all the information about a single ship into this single object. Nice and con-
solidated.

11.8 More on Methods
Problem-solving step: Understanding the Problem.

Remember that methods are functions that are connected to the object. Just like you could think of at-
tributes as things the object has, you can think of methods like things the object does.

Let’s add another method to set the ship location.

1 class StarShip:
2 def __init__(self, name): # The constructor
3 self.name = name
4 self.location = [0, 0, 0] # <-- Add this
5

6 def set_location(self, x, y, z):
7 """Set a ship's location to x,y,z"""
8

9 self.location[0] = x
10 self.location[1] = y
11 self.location[2] = z
12

13 s0 = StarShip("MCRN Tachi")
14

15 print(s0.location) # [0, 0, 0]
16

17 s0.set_location(10, 20, 30)
18



Chapter 11. Classes and Objects 108

19 print(s0.location) # [10, 20, 30]

On line 6, we define our new method, set_location(). Importantly, notice the first parameter is self,
which will be initialized to represent the object we’re setting the location of. (That is, when we call
s0.set_location(), self will be set to refer to s0 inside set_location().)

Fun Debugging Fact: If you get an error about the incorrect number of arguments to your method,
make sure you have self as the first parameter!

Then on line 17, when we call set_location() on s0, self gets set to s0, and x, y, and z get set to 10,
20, and 30, respectively.

Then we use x, y, z, and self inside the method to change the values in this ship’s location.

This way, when we print it out on line 19, we see the new values there.

Attributes!

11.9 Pretty Printing
Right now when we print one of our starship objects, Python prints something like this on the screen:

<__main__.StarShip object at 0x7fa11828c8e0>

Not particularly useful. Let’s override that functionality and have it print something nicer.

Go ahead and add this method to the StarShip class:

def __str__(self):
"""Return string representation of this object."""
return f'{self.name}: {self.location}'

The __str__() method returns a string to use any time an object is printed.

Now if we build three new ships and print them all:

s0 = StarShip("Rocinante")
s1 = StarShip("Red Dwarf")
s2 = StarShip("USCSS Nostromo")

s0.set_location(10, 20, 30)
s1.set_location(40, 50, 60)
s2.set_location(70, 80, 90)

print(s0)
print(s1)
print(s2)

We get some nice output, like this:

Rocinante: [10, 20, 30]
Red Dwarf: [40, 50, 60]
USCSS Nostromo: [70, 80, 90]

Perfect!



Chapter 11. Classes and Objects 109

11.10 Objects are Mutable
When you assign one object to another, you don’t get a second object. You get another reference to the
first object. Just like happens with lists and dictionaries.

Or, another way, doing an assignment with an object does not result in a new object. Both variables are
names for the same object. (Check out Appendix C for details.)

class Forest:
pass

x = Forest() # Construct a new object
y = x

x.antelopes = 4

print(y.antelopes) # 4, since y and x refer to the same object

This means you can pass objects to functions as arguments, and the function can change the values in the
object’s attributes.

def set_antelopes_to_10(o):
o.antelopes = 10

class Forest:
pass

x = Forest()
x.antelopes = 4

set_antelopes_to_10(x)

print(x.antelopes) # 10!

Remember that when you call a function, it is assigning the argument into the parameter name, so both
of them refer to the same object. That is, in the code above, o refers to the same object x does, just as if
we’d done an assignment with o = x.

11.11 Objects and None

We’ve already seen that variables can point to the value None to indicate nothing.

This gets commonly used with objects to indicate some “not found” or error condition.

For example, let’s have a list of objects and a function to search them by name. The function should return
the object that has a name attribute that matches the name parameter to the function.

But a question should naturally arise! What if there is no object by that name in the list? What should the
function return? None is a prime candidate here.

1 class Person:
2 def __init__(self, name):
3 self.name = name
4

5 def __str__(self):
6 return self.name
7

8 def get_person_by_name(person_list, name):



Chapter 11. Classes and Objects 110

9 """Return a person object with this name, or None if not found"""
10 for p in person_list:
11 if p.name == name:
12 # If we found them, return the object
13 return p
14

15 # If we got here, we didn't find anyone by that name
16 return None
17

18 person_list = [
19 Person("Annie"),
20 Person("Beej"),
21 Person("Chris")
22 ]
23

24 p = get_person_by_name(person_list, "Chris")
25

26 print(p) # "Chris"
27

28 p = get_person_by_name(person_list, "Dave")
29

30 if p is None:
31 print("Dave's not here.")

11.12 Testing for Attributes
Sometimes at runtime, you want to see if an object has an attribute or not. Or maybe you have the attribute
name as a string and you want to get or set that attribute on an object.

Three built-in functions help make this happen:

• hasattr() tests to see if an attribute exists on an object.
• getattr() returns the value of an attribute, optionally returning a default value if the attribute
doesn’t exist.

• setattr() sets the value of an attribute, creating it if it doesn’t exist.

This gives you more flexibility in writing your objects, because then you can have optional attributes on
them.

Let’s demo!

class Foo:
pass

f = Foo()
f.bar = 12

print(hasattr(f, "bar")) # True
print(hasattr(f, "frotz")) # False

print(getattr(f, "bar")) # 12
print(getattr(f, "frotz", None)) # None, since attr frotz doesn't exist

setattr(f, "frotz", 99) # Just like saying "f.frotz = 99"

print(f.frotz) # 99



Chapter 11. Classes and Objects 111

I wouldn’t say that these functions get a lot of day-to-day use, but they’re a powerful thing to add to your
toolkit.

11.13 Chapter Project
In case you’ve forgotten, review the chapter project specification at the beginning of this chapter.

Problem-solving step: Understanding the Problem.

Looks like we need to store information about a number of theaters, as well as information about a number
of movies.

And a movie might be showing in multiple theaters simultaneously.

Problem-solving step: Devising a Plan

There are a lot of ways to store this data. But since this chapter is all about classes and objects, how about
we use those?

Looks like we should have a Theater class to handle information about each theater.

And a Movie class to handle information about each movie.

And a theater can be showing several movies, so we can give it an attribute that is a list of movies that is
currently showing there.

We’ll also keep a list of all the theaters and a list of all the movies, as well.

Problem-solving step: Carrying Out the Plan

Here’s a theater class. We pass a name to the constructor but initialize the movies to an empty list. We
can fill them in later.

1 class Theater:
2 """Holds all the information about a specific theater."""
3 def __init__(self, name):
4 self.name = name
5 self.movies = []
6

and a movie class:

7 class Movie:
8 """Holds all the information about a specific movie."""
9 def __init__(self, name, duration, genre):
10 self.name = name
11 self.duration = duration
12 self.genre = genre
13

So far so good.

Now we need to instantiate a bunch of movies so that we can add them to the theaters’ .movie lists.

There are a couple of things we could do.

We could use one variable per movie, but that’s a bit unwieldy. Let’s use some kind of collection, like a
list! We’ll make one for all the movies and all the theaters. Go ahead and add your favorites.

14 movies = [
15 Movie("Star Wars", 125, "scifi"),
16 Movie("Shaun of the Dead", 100, "romzomcom"),
17 Movie("Citizen Kane", 119, "drama")



Chapter 11. Classes and Objects 112

18 ]
19

20 theaters = [
21 Theater("McMenamin's Old St. Francis Theater"),
22 Theater("Tin Pan Theater"),
23 Theater("Tower Theater")
24 ]
25

Take a look in there to see what we’ve done. Notice that movies is a list, and inside the list, while we’re
initializing it, we’re constructing new Movie objects.

And we do the same thing with theaters. It’s a list of newly-constructed Theater objects.

Nextly, we need to associate those movies with the theaters that are showing them.

Remember that each Theater object has a list of movies in its .movies attribute. So we need to append
the movies to that list.

This next bit is a little cryptic, so make sure

26 # McMenamin's is showing Star Wars and Shaun of the Dead
27 theaters[0].movies.append(movies[0])
28 theaters[0].movies.append(movies[1])
29

What’s that saying?

Well, take it a bit at a time, each line from left to right.

What’s theaters[0]?

If we look in our theaters list, we see that’s McMenamin’s.

And then we get its movie list with theaters[0].movies.

Its movies list is a list, so we can use the .append() list method to add a movie to it. But which movie
to append?

We append movies[0]… and if we look in our movies list, we see that’s Star Wars.

So theater[0] is McMenamin’s, and movies[0] is Star Wars.

That means the first line, above, is saying, “Append ‘StarWars’ toMcMenamin’s list of currently showing
movies.”

And the line below that is saying, “Append ‘Shaun of the Dead’ toMcMenamin’s list of currently showing
movies.”

Let’s do some more. What do each of these lines do?

30 # Tin Pan is showing Shaun of the Dead and Fastest Indian
31 theaters[1].movies.append(movies[1])
32 theaters[1].movies.append(movies[2])
33

34 # Tower is showing all three
35 theaters[2].movies.append(movies[0])
36 theaters[2].movies.append(movies[1])
37 theaters[2].movies.append(movies[2])
38

What we’ve done here, effectively, is linked up all the movie objects with their respective theaters.

Notice howmovies are listed inmultiple theaters. For example movies[0] (StarWars) is in theaters[0]
(McMenamin’s) and also in theaters[2] (Tower).



Chapter 11. Classes and Objects 113

Does that mean there are two copies of the Star Wars Movie object? Since it’s in two theaters?

Think carefully!

No, there’s just one! The one we created back on line 15! Since it’s an object, making a “copy” through
assignment (or with .append()) just makes another reference to the same object. There’s only one, but
it’s referred to by two Theater objects. And also referred to by the movies list. So many references to
the same object for good memory savings.

Now we want to print out all the theaters and their showtimes. I’m going to make a helper function here
to print a single theater’s data. We’ll pass in a reference to a theater object, print its name, and then print
the data for all the movies in its .movies list.

39 def print_theater(theater):
40 """Print all the information about a theater."""
41

42 print(f'{theater.name} is showing:')
43

44 for m in theater.movies:
45 print(f' {m.name} ({m.genre}, {m.duration} minutes)')
46

And lastly, all we have to do is call print_theater() for all the theaters in our theaters list:

47 # Main code
48 for t in theaters:
49 print_theater(t)

There we have it! (Solution6.)

Problem-solving step: Looking Back.

Check out how we looked at the problem description (which basically said “theaters show movies, and a
movie might be shown at multiple theaters”) and mapped that into two classes to hold the information per
theater and per movie.

Notice how the classes keep all the information for a theater or movie in a self-contained single object.
Nice and clean, plus it’s easy to pass around a reference to an object if another function wants to use it.

What are some shortcomings?

Those lines where we add the movies to theaters are pretty hard to read. And they refer to things like
movies[0] instead of referring to them by name.

It might be convenient to have some kind of helper function that could lookup the movie object by name,
similar to this:

def find_movie_by_name(movies, name):
for m in movies:

if m.name == name:
return m

return None # Didn't find it

and use that to clean up the code a bit. And something similar for theaters. (Of course, the more movies
you have, the longer it takes to find one. A dictionary might be a faster data structure to use here.)

But this approach doesn’t handle the case where there are two movies or theaters of the same name. So
another workaround would have to be found there—may be a unique identifier number for each theater
and movie that we’d key off instead?

Now… what about that stretch goal to add movie times to all this?
6https://beej.us/guide/bgpython/source/examples/moviesign.py

https://beej.us/guide/bgpython/source/examples/moviesign.py


Chapter 11. Classes and Objects 114

Problem-solving step: Understanding the Problem.

This one might not seem tricky at first, but it comes to get you with the details.

You might think, no problem, we’ll just add times to the Movie class, right?

Yes, but… Different theaters are all showing the same movie. But at different times.

If you think about it, the times a movie is showing is more data attached to the theater, and not really data
attached to the movie. It would make no sense for Disney to say, “Coming this Winter: Star Wars Episode
47, at 8 pm and 10 pm!” They don’t know when theaters are going to show the movie!

Okay, then, let’s attach the times to the Theater class.

But this presents us with another problem. How do we associate a set of times with a particular Movie
object? We need a way in code to show that they’re linked so that we can print them out together.

Problem-solving step: Devising a Plan

We can do this with a new class—call it MovieTime—that contains both a reference to a movie and a list
of times that movie is showing. And then we can add instances of this new class to the Theater objects.

In this way, if we have a reference to a Theater, we can look up its list of MovieTime objects, and then for
each of those, look up the Movie object reference contained within and print it out along with the times.

We’re shimming a new class in the middle with both the movie and the showtimes. This is how we can
bundle that together.

Problem-solving step: Carrying Out the Plan

Let’s add that new class that holds both a reference to a movie as well as the times it’s showing:

class MovieTime:
"""Holds a movie and the times it is playing"""
def __init__(self, movie, times):

self.movie = movie
self.times = times

Then we need to modify the Theater class to have a list of MovieTime objects instead of Movie objects.

class Theater:
"""Holds all the information about a specific theater."""
def __init__(self, name):

self.name = name
self.movietimes = [] # <-- Now this is MovieTime objects

And now when we construct our lists of theater information, we need to add new MovieTime objects to
the list in the theater. The MovieTime objects contain references to the movie being shown, as well as a
list of showtimes.

# McMenamin's is showing Star Wars and Shaun of the Dead
theaters[0].movietimes.append(MovieTime(movies[0], ["7pm", "9pm", "10pm"]))
theaters[0].movietimes.append(MovieTime(movies[1], ["5pm", "8pm"]))

# Tin Pan is showing Shaun of the Dead and Fastest Indian
theaters[1].movietimes.append(MovieTime(movies[1], ["2pm", "5pm"]))
theaters[1].movietimes.append(MovieTime(movies[2], ["6pm", "8pm", "10pm"]))

# Tower is showing all three
theaters[2].movietimes.append(MovieTime(movies[0], ["3pm"]))
theaters[2].movietimes.append(MovieTime(movies[1], ["5pm", "7pm"]))
theaters[2].movietimes.append(MovieTime(movies[2], ["6pm", "7pm", "8pm"]))



Chapter 11. Classes and Objects 115

Lastly, when we print it out, we need to extract the movie and the show times from the MovieTime object
so we can print them:

def print_theater(theater):
"""Print all the information about a theater."""

print(f'{theater.name} is showing:')

for mt in theater.movietimes:
m = mt.movie
t = " ".join(mt.times) # Make string of times separated by spaces
print(f' {m.name} ({m.genre}, {m.duration} minutes): {t}')

And that’s that!

Output now looks like this:

McMenamin's Old St. Francis Theater is showing:
Star Wars (scifi, 125 minutes): 7pm 9pm 10pm
Shaun of the Dead (romzomcom, 100 minutes): 5pm 8pm

Tin Pan Theater is showing:
Shaun of the Dead (romzomcom, 100 minutes): 2pm 5pm
Citizen Kane (drama, 119 minutes): 6pm 8pm 10pm

Tower Theater is showing:
Star Wars (scifi, 125 minutes): 3pm
Shaun of the Dead (romzomcom, 100 minutes): 5pm 7pm
Citizen Kane (drama, 119 minutes): 6pm 7pm 8pm

(Solution7.)

Problem-solving step: Looking Back.

Aside from the improvements noted in the last “Looking Back”, we might be able to fix this one up a bit
with respect to how it handles times.

Right now, we’re storing the times in strings, but it would be better to store them as datetime objects
from the Python standard library8.

This would enable us to do date math with the showtimes, e.g. to tell the user how many minutes until the
next showing.

11.14 Exercises
Remember: to get your value out of this book, you have to do these exercises. After 20 minutes of
being stuck on a problem, you’re allowed to look at the solution.

Use any knowledge you have to solve these, not only what you learned in this chapter.

Always use the four problem-solving steps to solve these problems: understand the problem, devise a
plan, carry it out, look back to see what you could have done better.

1. Write a class that describes a car. What are the attributes the class would have? What methods?
(There’s no one right answer here—think freely.)

(Potential Solution9.)

2. Write a class called SubwayCar that represents a single train car on a subway train. What attributes
would it have? What methods?

7https://beej.us/guide/bgpython/source/examples/moviesign2.py
8https://docs.python.org/3/library/datetime.html
9https://beej.us/guide/bgpython/source/examples/ex_car.py

https://beej.us/guide/bgpython/source/examples/moviesign2.py
https://docs.python.org/3/library/datetime.html
https://docs.python.org/3/library/datetime.html
https://beej.us/guide/bgpython/source/examples/ex_car.py


Chapter 11. Classes and Objects 116

Add a name attribute to the class so you can name the cars.

Add a next attribute to the class that points to the next SubwayCar in the train. This should refer
to the next SubwayCar instance, or to None if it’s the last car.

Have a variable, head, that points at the first subway car.

This way you can “hook together” a train, like this (pseudocode):

head = SubwayCar("Engine")
car1 = SubwayCar("Passenger car 1")
car2 = SubwayCar("Passenger car 2")
car3 = SubwayCar("Passenger car 3")

head.next = car1
car1.next = car2
car2.next = car3
car3.next = None # End of the train

Now have a variable, location, that is your current location in the train. Start it at the head:

location = head

Then write a loop to “walk” the location variable down the train (by following the next pointers),
printing out the name of each car as it goes, until it reaches the end.

This famous data structure is actually called a linked list. But I disguised it as a subway train to be
less intimidating.

(Solution10.)

3. Make a Room class that has a name attribute.

Also give it n_to, s_to, w_to, and e_to attributes. These will refer to the rooms that are north,
south, west, and east of a particular room. None in one of these attributes means there’s no exit in
that direction.

For example, two rooms that are hooked up west to east (and vice versa) could be constructed like
this:

room0 = Room("Cobble Crawl")
room1 = Room("Debris Room")

room0.e_to = room1 # east from Cobble Crawl to Debris Room
room1.w_to = room0 # west from Debris Room to Cobble Crawl

Make 5-6 rooms and hook them up in various directions.

Now have a variable, location, that is the current player location in the world. Start it pointing to
the starting room, e.g.:

location = room0

Next, get player input of either n, s, w, or e, and change location to the room in the specified
direction.

If there’s no room there, print the string "You can't go that way.".

If the user enters q, quit the game.

(Solution11.)
10https://beej.us/guide/bgpython/source/examples/ex_subway.py
11https://beej.us/guide/bgpython/source/examples/ex_adv2.py

https://beej.us/guide/bgpython/source/examples/ex_subway.py
https://beej.us/guide/bgpython/source/examples/ex_adv2.py


Chapter 11. Classes and Objects 117

11.15 Summary
All kinds of goodies in this chapter! We dipped our toes in the magical world of classes and objects, which
is the beginning of learning the world-famous Object-Oriented Programming (OOP).

We saw how we could concisely bundle data and functionality into a single convenient class and then
make objects from the class, using the class as a blueprint.

And, importantly, we learned that multiple variables can refer to the same object—that objects are not
copied when you make an assignment.

Finally, we touched on the idea that None could be used to indicate “absence of an object”.

Though objects and classes form the basis for OOP, we really haven’t touched on what that means yet.
But that’s a story for another chapter.



Chapter 12

Importing Modules

12.1 Objective
• Learn what a module is
• How to find modules to use
• How to import modules

12.2 Chapter Project Specification
Open a ZIP archive and print out a directory of the files that are in there, their size in bytes, and the time
they were last modified.

If you’re unfamiliar with the ZIP format, it’s a way to take multiple files and compress them into
a single file, called a ZIP archive. The table of contents shows what files exist within the ZIP file.
They can be recovered later by extracting them, but we’re not going to do that for this project.

An example ZIP file can be found in the examples directory1.

Output should be:

File Name Modified Size
hello.txt 2020-02-09 15:12:20 6
world.txt 2020-02-09 15:12:24 7

(Spacing in the above example was changed to fit the margins—you don’t have to match spacing exactly.)

Keep this project in mind as we go through this chapter’s material.

12.3 What and Why of Modules
Problem-solving step: Understanding the Problem.

Modules are pieces of self-contained code that you can import into your code and use. Think of them
as prefabricated building blocks that you can put together in your project to accomplish tasks without
needing to write out the details yourself.

This is actually a really powerful concept that you have at your disposal. Tons of code have already been
written, and you can just use it!

Do you want to compute anything to do with date and time? Python has a module for that.

Do you want to draw graphics on the screen? Python has a module for that.

Do you want to generate animated GIFs from a sequence of stills? There’s a module for that.
1https://beej.us/guide/bgpython/source/examples/example.zip

118

https://beej.us/guide/bgpython/source/examples/example.zip


Chapter 12. Importing Modules 119

Do you want to download an image from a URL and save it to disk? There are modules for that.

There are tons of modules built-in to Python_2. Give the list a skim so you know what’s there, but you
don’t need to drill down at all unless you’re dying of curiosity over a particular module.

Are there are zillions of third-party modules3 you can use, as well.

You can import as many modules as you want into an individual project.

12.4 Using a Module
Problem-solving step: Understanding the Problem.

You declare your intent to use a module with the import keyword. We’re going to do an example with
the built-in sys module4, which contains all kinds of useful information about the system.

Let’s see what platform Python thinks we’re running.

But first, some syntax.

When using a function or variable inside a module, you use the dot operator to get the variable, similar to
how you get attributes from objects. In fact, very similar. When you import a module, Python gives you
an object by that name with functions and data attached to it as attributes.

Step one is to import the module. Then you can access the members of that module.

For example, if we:

import sys

we’ll end up with an object called sys with attributes that you can access!

Problem-solving step: Devising a Plan

Digging through the documentation for the sysmodule, we find there’s something called sys.platform
that looks really promising.

Let’s print it!

Problem-solving step: Carrying Out the Plan

import sys # Gets us access to all the sys goodies

print(sys.platform)

What does it output for you?

For me, on Linux or Windows WSL, it prints “linux”. On Windows, it prints “win32”.

Notice there was nothing we had to do ourselves to make this determination. (Which is good, because it
would be a pain to write!) Fortunately, the sys module had everything we needed right there.

12.5 Command Line Arguments
Problem-solving step: Understanding the Problem.

I’ve been hiding something.

In terms of how you run Python programs from the command line.

It turns out you can add things after the Python program name.

Say what?
2https://docs.python.org/3/library/index.html
3https://pypi.org/
4https://docs.python.org/3/library/sys.html

https://docs.python.org/3/library/index.html
https://pypi.org/
https://docs.python.org/3/library/sys.html


Chapter 12. Importing Modules 120

Let’s say you have a program called foo.py. You can run it like this, of course:

python foo.py

You can also run it like this:

python foo.py something another antelopes

Those extra words after the program name are called command line arguments.

But why would you do this?

So you can control the behavior of the program from the command line! When you run it, it’s nice to be
able to influence behavior this way instead of having to call input() with prompts and everything else.

But how do you get those extra command-line arguments?

Our good friend sys module can help us again here.

The variable sys.argv is a list that contains the program name followed by all the command line argu-
ments.

Run this program with a variety of command-line arguments and see what it outputs:

import sys

print(sys.argv)

Example output:

$ python foo.py
['foo.py']

$ python foo.py aa bb cc
['foo.py', 'aa', 'bb', 'cc']

So at runtime, we can look in sys.argv and make decisions about what we want to do!

Let’s put it to use in the next section.

12.6 Printing Calendars
Print a calendar for any month and year!

Problem-solving step: Understanding the Problem.

Your first thought should have been something like, “Holy cow, Beej—how am I supposed to figure all
that out? Was November 12, 1955, a Friday or a Saturday? I don’t know!”

Luckily, we don’t have to know! There’s a module, calendar, that we can use to do all the dirty work
for us.

If you pop to the instructions5, you’ll see pages and pages of material. It’s intimidatingly impenetrable.

Reading docs is one of the things you’ll get better at with practice. At first, it’s a bit of a slog, but you’ll
improve.

First of all, start skimming down and looking for anything that has to do with text calendars. If it doesn’t
seem to have anything to do with that, keep skimming.

I’ll wait. Go for it.
5https://docs.python.org/3/library/calendar.html

https://docs.python.org/3/library/calendar.html


Chapter 12. Importing Modules 121

Spoilers coming! Really go scan them and find it yourself! Practice makes perfect!

Problem-solving step: Devising a Plan

OK—so hopefully you got about halfway down the page and found the TextCalendar class. It says:

This class can be used to generate plain text calendars.

That sounds promising. In fact, just below that, it mentions there’s a prmonth()method on the class that
you can use to print a calendar for a given month and year.

Perfect!

Problem-solving step: Carrying Out the Plan

We can code it up like this:

import calendar

tc = calendar.TextCalendar() # Make a new TextCalendar object

tc.prmonth(1970, 1) # Print January 1970

and this will present us with a nice text calendar that looks like this:

January 1970
Mo Tu We Th Fr Sa Su

1 2 3 4
5 6 7 8 9 10 11

12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

Problem-solving step: Looking Back.

We found what we wanted halfway down the documentation, so we’re good right?

Well, it might be worth skimming the rest of the documentation just to see what else the calendar module
can do.

And, in fact, if we look down farther, the docs say:

For simple text calendars this module provides the following functions.

And one of those functions is prmonth(). We can just call it directly without making an intermediate
object!

import calendar

calendar.prmonth(1970, 1)

gets us the same output as before—and it’s simpler!

Problem-solving step: Understanding the Problem.

Let’s mod this. Right now, it’s hardcoded to print out a January, 1970 calendar. Let’s change it so that
you could run it from the command line and pass in the arguments you need, like this:

python cal.py 1970 1

or

python cal.py 1955 11



Chapter 12. Importing Modules 122

to print out the January, 1970 or November, 1955 calendars, respectively.

That makes it more flexible—we get all kinds of new behavior without changing the code. Much more
usable.

Problem-solving step: Devising a Plan

We saw in this section how to print a calendar, and we saw in the previous section how to get command-line
arguments into a list.

Let’s get the year and month from sys.argv and pass them into calendar.prmonth().

Problem-solving step: Carrying Out the Plan

Let’s do exactly that:

import sys
import calendar

year = sys.argv[1]
month = sys.argv[2]

calendar.prmonth(year, month)

When we run it with:

python cal.py 1970 1

though, something bad happens:

Traceback (most recent call last):
File "cal.py", line 7, in <module>

calendar.prmonth(year, month)
File "/usr/lib/python3.8/calendar.py", line 350, in prmonth

print(self.formatmonth(theyear, themonth, w, l), end='')
File "/usr/lib/python3.8/calendar.py", line 358, in formatmonth

s = self.formatmonthname(theyear, themonth, 7 * (w + 1) - 1)
File "/usr/lib/python3.8/calendar.py", line 341, in formatmonthname

s = month_name[themonth]
File "/usr/lib/python3.8/calendar.py", line 59, in __getitem__

funcs = self._months[i]
TypeError: list indices must be integers or slices, not str

Yikes!

Let’s take this error apart and see if we can tell what’s up. It’s not really being that forthcoming, is it?

Start at the top. It tells you what file the error is in on the first line: cal.py on line 7. And it shows us
the line below that… it’s where we’re calling calendar.prmonth().

But that looks fine, right?

Going farther down, it’s showing us the call stack, that is, the path of function calls that culminated in the
error. And those are in the calendar.py file, which is the calendar module.

We didn’t even write that code! How dare there be an error in it!

Well, it’s not an error—it’s the module telling us, in a roundabout way, we’re not using it right.

Finally, at the bottom, we see the error itself: TypeError. And the description:

TypeError: list indices must be integers or slices, not str



Chapter 12. Importing Modules 123

We don’t have any lists in our code, so what’s it even talking about lists for? Well, who knows how the
stuff is implemented in the library, but scan that error message and see if there’s anything in there that
hints toward what we have to do.

It says “must be integers or slices, not str”. Hmmm.

When we called it with

calendar.prmonth(1970, 1)

it was fine, but now it’s not? Wait—when we called it that way, we passed integers in… but now we’re
passing in sys.argv[1]. Is that an integer?

There’s a built-in function called type() we can use. Let’s add this code:

import sys
import calendar

year = sys.argv[1]
month = sys.argv[2]

print(type(year)) # <-- Add this
print(type(month)) # <-- Add this

calendar.prmonth(year, month)

Running it again, we get the same error, but before that, we see some output:

<class 'str'>
<class 'str'>

That’s telling us sys.argv[1] and sys.argv[2] are strings! And we were passing ints before. Let’s
convert those to ints before we pass them in. The error message did say we needed ints, not strings.

import sys
import calendar

year = int(sys.argv[1])
month = int(sys.argv[2])

calendar.prmonth(year, month)

And now when we run it:

$ python cal.py 2038 1
January 2038

Mo Tu We Th Fr Sa Su
1 2 3

4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

Whee!

Problem-solving step: Looking Back.

Not too shabby. What else can we make better?

It’s time to think like a villain. What can you do to this program as a user to break it?



Chapter 12. Importing Modules 124

How about passing in a negative year? (Hey, that works!)

What about a negative month?

That crashes with a big ugly stack trace.

We could fix that by checking the values of month and making sure the user-specified 1-12, or print an
error otherwise. Something like this:

if month < 1 or month > 12:
print("Month must be 1-12!")
sys.exit() # call this to stop running the program here!

What if the user specifies a year, but no month? Another crash.

We could check the length of sys.argv and make sure it was the right value (namely 3, since it includes
the name of the program along with the year and month). If it wasn’t, we could print an error message
and exit.

Here’s the complete code with error checking:

import sys
import calendar

if len(sys.argv) != 3:
print("usage: cal.py year month")
sys.exit() # stop running

year = int(sys.argv[1])
month = int(sys.argv[2])

if month < 1 or month > 12:
print("Month must be 1-12!")
sys.exit() # stop running

calendar.prmonth(year, month)

Ship it!

12.7 Importing Specific Attributes
There’s an alternate syntax for import that you can use to bring attributes from a module directly into the
global namespace.

What do I mean by that?

Well, the upshot is that if you’re tired of typing the module name followed by a dot to access a particular
function or piece of data, you can bring that in to use directly, instead.

Let’s do an example.

The time modules have a function called ctime() that prints the time out in a classic format.

import time

print(time.ctime()) # "Sun Feb 9 13:37:00 2020"

But if you’re going to call it repeatedly, it might make the code look worse to have “time.” all over the
place.

We can do this, instead:



Chapter 12. Importing Modules 125

# Bring in ctime() explicitly:

from time import ctime

print(ctime()) # Look, ma! No "time."!

If a module has multiple things you want to import, you can bring them in with a comma list:

# import all three!

from time import ctime, localtime, monotonic

Or, if you’re feeling bold, you can import it all!

from time import *

But I generally recommend against that. It takes time for Python to do it, and if you only need a few things,
pick them explicitly.

Furthermore, a lot of devs rely on the module name being a visual cue that we’re talking about a function
in a module, here. If we come across some code that says:

print(ctime())

Is that a function that the programmer-defined, or is it something that we from imported from some-
where? By putting the name of the module first, it helps mitigate that ambiguity:

print(time.ctime())

So in general, I don’t use import from unless it makes the code decidedly more readable to do so.

Remember: readable code is high-value code!

12.8 Learning All The Modules
If you check out the list of modules6 you get with Python, it looks pretty intimidating. I mean, there’s a
lot there.

How do you deal with it?

This is one of the toughest parts of learning a new language: learning the standard library (the bundled
modules) that comes with it. Each language has its own way of doing things, and those ways are legion.

Step one: give up now. You’re not going to memorize all this.

The best thing to do is skim it at the level of the contents. Just try to remember that there exists a module
for dealing with times. And a module for dealing with calendars. And for dealing with network commu-
nication. And so on.

Don’t worry about the details. You can always look them up later. But if you don’t know that there even
is a module that handles reading and writing of CSV7 files, then you won’t know to look it up when you
need it.

All devs, even experienced ones, look things up. All the time.
6https://docs.python.org/3/library/index.html
7https://en.wikipedia.org/wiki/Comma-separated_values

https://docs.python.org/3/library/index.html
https://en.wikipedia.org/wiki/Comma-separated_values


Chapter 12. Importing Modules 126

12.9 Chapter Project
If you need to, review the specification at the top of the chapter.

You might be thinking, “This is kind of a big jump, don’t you think, Beej? I mean, we haven’t even talked
about how to open a file, and here you want me to somehow gaze magically inside a ZIP file and extract
the contents?”

Well… yes. By “magically”, though, I mean something in particular. As you might have guessed, there’s
a module for opening ZIP files8. We can import this and make it do the heavy lifting for us!

Easy, right?

Well, not so fast. If you follow the link to the docs, above, you’ll find pages and pages and pages of
material with no clear indication of where to start. (Bring up that URL now, because we’re about to go
through it.)

It’s nice that the module is there for us to use, but we have to sift through all this to use it?

Pretty much.

There is a shortcut that you can take. You can Google for “python print zip archive example”, and you’ll
get some hits. This can be super powerful, and we do this kind of thing all the time in development, but
for this project try not doing this.

Let’s just look at the docs and try to make sense of them, because this is a skill in itself, and is worth
practicing.

Problem-solving step: Understanding the Problem.

This one’s pretty straightforward. We have a ZIP file from the examples, and we want to print out the files
that are compressed within it.

In fact, this can be done in three lines of Python. Just… what three lines?

We just have to plan it out.

Problem-solving step: Devising a Plan

Here’s where we start digging. Start skimming the docs, and take note of anything that sounds remotely
like what you want to do. Ignore anything you don’t understand. We want to get information about the
contents of the ZIP file.

Keep your eyes peeled for example code.

Let’s skim!

I want you to come up with a list of functions or data in the docs that sound promising. As we learned
earlier in this chapter, it can pay to skim the entire document so you don’t miss anything.

Go for it.

I’ll wait.

I’m about to share my list of candidates, now, so run get yours to see how it compares.

Spoiler alert!

Here are things that I thought sounded like they might get me my table of contents for the ZIP file.

Here are the first few I found. As I go, I’m keeping track in my head about which one sounds the most
promising:

ZipInfo # Class containing info about a ZIP file member
ZipFile.getinfo() # Return a ZipInfo object for a file member
ZipFile.infolist() # Return ZipInfo objects for all file members
ZipFile.namelist() # Return list of file members by name

8https://docs.python.org/3/library/zipfile.html

https://docs.python.org/3/library/zipfile.html


Chapter 12. Importing Modules 127

Let’s keep looking.

ZipFile.open() # Access member of the archive
ZipFile.printdir() # Print a table of contents to sys.stdout (!!!!)

Now that sounds promising.

sys.stdout is a file stream that represents what we call standard output. For now, when you hear
stdout or standard output, replace it with “the screen”.

So printdir() prints the table of contents to the screen, which sounds exactly like what we’re after.

But let’s keep looking, just to be sure.

ZipFile.read() # Read bytes from a member of the archive
ZipFile.filename # Name of the ZIP file

ZipInfo.filename # Name of an archive member
ZipInfo.date_time # Modification time of an archive member
ZipInfo.file_size # File size of an archive member

And that’s the end of my skim. How did it compare with your list?

Now… Those last three look interesting. If we could get the ZipInfo object for each item in the archive,
we could use those attributes to print out our directory listing.

But that sounds like it’s just going to get us what the printdir() function would do, and printdir()
looks easier to use.

Maybe we’re wrong, but let’s pursue printdir(), and if it doesn’t pan out, we can go to Plan B and try
the ZipInfo fields.

So… How do we use it? Let’s read the docs again.

{.py} ZipFile.printdir()

Print a table of contents for the archive to sys.stdout.

So we need a ZipFile object that represents the ZIP file example.zip.

That is, we know the ZIP is named example.zip, and we need to go from that to a ZipFile object. Once
we have the ZipFile object for example.zip, we can call printdir().

OK. So how do we do that? Time to get back to skimming docs! How do I create a ZipFile object?

Skim now!

We saw earlier this was the class:

zipfile.ZipFile

And a bit farther down, we have:

{.py} class zipfile.ZipFile(file, mode='r', compression=ZIP_STORED, allowZip64=True, compresslevel=None, *, strict_timestamps=True)
Open a ZIP file, where file can be a path to a file (a string), a file-like object or a path-like object.

Recognize that? It’s a constructor!! That’s what we want! We want to construct a ZipFile object from
the string example.zip, and that’s exactly what this does for us.

Continuing down, I’m not seeing anything else that helps us make a ZipFile object, so let’s pursue this
plan.

1. Import the ZIP file functionality.
2. Create a ZipFile object from example.zip.
3. Print the table of contents with printdir() on that ZipFile object.



Chapter 12. Importing Modules 128

Let’s go!

Problem-solving step: Carrying Out the Plan

1 import zipfile
2

Check.

Okay—nowwe need to do something with that ZipFile constructor. Recall that since it’s in the zipfile
module, we have to refer to it as zipfile.ZipFile when we use it.

But, man, the docs are thick for the constructor. What is all that stuff?

Remember that any keyword argument with something after an equal sign is optional. We don’t have to
pass arguments for mode, compression, or any of those.

What we do have to pass in in the file, which is the filename to read. Let’s do that, and we’ll save the
newly-constructed object in the variable zf:

3 # Important: make sure example.zip is in the same directory
4 # as this program!
5

6 zf = zipfile.ZipFile('example.zip')
7

Great!

And now that we have that object, let’s print its directory:

8 zf.printdir()

And that gives us this output:

File Name Modified Size
hello.txt 2020-02-09 15:12:20 6
world.txt 2020-02-09 15:12:24 7

Yes!

Problem-solving step: Looking Back.

What else can we do with this to improve it?

One easy thing to do would be to use sys.argv to get the name of the archive to print out the listing for.

Another thing that you might have noticed in the docs is there is all kinds of additional info about members
of the archive. In addition to name, time, and size, there’s also comments, compression type, compressed
size, CRC9, and other things to print.

By adding up all the uncompressed sizes, the compressed sizes, and then dividing one by the other, you
can get the compression ratio—how much smaller the files got by putting them in the archive.

(Solution10, example zipfile11.)

12.10 Exercises
Remember: to get your value out of this book, you have to do these exercises. After 20 minutes of
being stuck on a problem, you’re allowed to look at the solution.

9https://en.wikipedia.org/wiki/Cyclic_redundancy_check
10https://beej.us/guide/bgpython/source/examples/zipdir.py
11https://beej.us/guide/bgpython/source/examples/example.zip

https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://beej.us/guide/bgpython/source/examples/zipdir.py
https://beej.us/guide/bgpython/source/examples/example.zip


Chapter 12. Importing Modules 129

Use any knowledge you have to solve these, not only what you learned in this chapter.

Always use the four problem-solving steps to solve these problems: understand the problem, devise a
plan, carry it out, look back to see what you could have done better.

1. Every process running on your system is represented by a numeric process ID. When you run a
program, it gets a unique process ID (PID) that exists until the process exits.

Write a program to print out its current process ID. Check out the docs for the osmodule12 for hints.
You might want to search that page for anything to do with “current process ID”… :)

Don’t forget to import the module!

When you run it, run it multiple times to see that the PID changes from run to run.

(Solution13.)

2. Write a program to generate random UUIDs. A UUID (pronounced “YOU-id”) is a random string
of letters and digits that looks like this:

54c3bfab-fd9f-4f4a-96db-8f9fccff88cd

(Well, yours will be different because it’s very, very, very unlikely that you’ll ever generate the same
random one twice.)

It’s short for Universally Unique ID. That means it’s unique in the universe, forever. Very, very
probably.

Using the UUID module14, generate a random UUID.

Actually, generate several. Have the user enter a number on the command line. Generate that many
UUIDs.

For example:

$ python ex_uuidgen.py 5
8a8128fb-941a-4a2f-8982-75273d7c0048
5fd7d64e-8491-4b61-82b0-f9438e7195dc
4012f3ed-f6d7-40b5-9031-961ee06a30ad
86c71566-014f-4e36-a55b-b18d677624b2
2c1e5b3f-f0de-4186-80c5-767628c437b3

Eagle-eyed readers might notice that the 13th digit is always 4. That’s because there are different
types of UUIDs, and this digit indicates the type. (This case it’s type 4, meaning random. Except
for the 4.)

You might also have noticed that, in addition to the numerals, only the letters “a” through “f” make
an appearance. Surprise! UUIDs, except for the hyphens, are actually numbers! They’re written in
a base-16 numbering system called hexadecimal. More on that in another chapter.

UUIDs are good any time you want to create an ID that you can be confident isn’t already used by
anyone, anywhere.

You might wonder how you can be sure? I mean, there’s a chance someone else will choose that
number, right?

Yes, there is a chance. It’s:

1 in 21,267,647,932,558,653,966,460,912,964,485,513,216.

For comparison, the odds of winning the Mega Millions lottery jackpot are:

1 in 258,900,000.
12https://docs.python.org/3/library/os.html
13https://beej.us/guide/bgpython/source/examples/ex_printpid.py
14https://docs.python.org/3/library/uuid.html

https://docs.python.org/3/library/os.html
https://beej.us/guide/bgpython/source/examples/ex_printpid.py
https://docs.python.org/3/library/uuid.html


Chapter 12. Importing Modules 130

So unless you’reworried about winning the lottery jackpot 82,146,187,456,773,479,978,605,303,068
times, you shouldn’t be worried about someone choosing a duplicate UUID.

And I wouldn’t say I’m worried I’d win the lottery that many times. More like disappointed.

(Solution15.)

3. You’re given the following string in Python—go ahead and paste it into a new source file:

matrix = """The Matrix is everywhere. It is all around us. Even
now, in this very room. You can see it when you look out your window,
or when you turn on your television. You can feel it when you go to
work, when you go to church, when you pay your taxes."""

That’s a big multi-line string.

I want you to print it out, but reformat it so that it’s only 40 columns wide, maximum:

The Matrix is everywhere. It is all
around us. Even now, in this very room.
You can see it when you look out your
window, or when you turn on your
television. You can feel it when you go
to work, when you go to church, when you
pay your taxes.

There’s a handy module called textwrap16 that has some functionality that you can use to make
your life easier.

(Solution17.)

4. Print a random integer between 0 and 1000, inclusive.

It should print a different number every run, for example:

$ python ex_rand1000.py
601
$ python ex_rand1000.py
374
$ python ex_rand1000.py
824

See the random module18 for help.

(Solution19.)

5. Print out the current date in the form:

Mon Feb 10

See the time module20 for help.

In case it happens to come up, locale refers to the human language spoken in the physical location
where the program is running, e.g. English or French or Chinese or Esperanto, etc.

(Solution21.)
15https://beej.us/guide/bgpython/source/examples/ex_uuidgen.py
16https://docs.python.org/3/library/textwrap.html#textwrap.TextWrapper
17https://beej.us/guide/bgpython/source/examples/ex_wrap.py
18https://docs.python.org/3/library/random.html
19https://beej.us/guide/bgpython/source/examples/ex_rand1000.py
20https://docs.python.org/3/library/time.html
21https://beej.us/guide/bgpython/source/examples/ex_curdate.py

https://beej.us/guide/bgpython/source/examples/ex_uuidgen.py
https://docs.python.org/3/library/textwrap.html#textwrap.TextWrapper
https://beej.us/guide/bgpython/source/examples/ex_wrap.py
https://docs.python.org/3/library/random.html
https://beej.us/guide/bgpython/source/examples/ex_rand1000.py
https://docs.python.org/3/library/time.html
https://beej.us/guide/bgpython/source/examples/ex_curdate.py


Chapter 12. Importing Modules 131

6. Write a program called zipextract.py that extracts files from a ZIP archive.

The command line should accept the name of the ZIP file as the first argument, and, optionally, the
name of the file in the archive to extract.

If the second argument is left off, extract all the files.

To extract all files:

python zipextract.py example.zip

To extract a specific file, run:

python zipextract.py example.zip hello.txt

(Solution22.)

12.11 Summary
Modules make the world go around… a lot more easily than it would have if you had to write all that stuff
yourself.

In this chapter, we learned what modules were and how to find them in the official Python docs.

Also, we learned how to import entire modules and individual components from within modules.

Later we’ll learn to write and import our own modules.

22https://beej.us/guide/bgpython/source/examples/ex_zipextract.py

https://beej.us/guide/bgpython/source/examples/ex_zipextract.py


Chapter 13

Reading Files

13.1 Objective
• Understand what a file is
• Be able to open and close a file
• Be able to read and write from files

13.2 Project
Write a line editor.

Back in the day, before terminals were very capable and before we had nice editors and IDEs like we do
today, people used line editors. These were bare-bones file editors that used simple commands to edit
files.

For example:

$ python lineedit.py foo.txt
> l 1
1: This is some text that was already in the file.
> a 1
This is some text that I'm appending to the file.
And some more.
.
> l 1
1: This is some text that was already in the file.
2: This is some text that I'm appending to the file.
3: And some more.
> e 3
And really some more.
> l 1
1: This is some text that was already in the file.
2: This is some text that I'm appending to the file.
3: And really some more.
> d 2
> l 1
1: This is some text that was already in the file.
2: And really some more.
> w
> q

In the example, everything following a > prompt is a line editor command.

132



Chapter 13. Reading Files 133

In order:

1. list the file starting from the given line.
2. append multiple lines of text after the given line (until the user types . on its own line).
3. list the file from line 1.
4. edit line 3.
5. list the file from line 1.
6. delete line 2.
7. list the file from line 1.
8. write the file to disk.
9. quit.

The commands are:

• list: list 10 lines (or up through the last line if fewer than 10 lines are remaining) starting from the
line the user specifies. If the user specifies a number less than 1, assume they entered 1.

• append: append multiple lines after the line the user-specified. Read lines one at a time, storing
them in turn, until the user enters a sole period (“.”) on a blank line.

• delete: Works like list, except deletes the line.

• edit: Edits a single line, replacing it. If the line is out of range, an error message should be printed.

• write: Saves the file to disk. If the filename wasn’t specified on the command line, the user must
specify a filename after the w.

• quit: exit the editor without saving the file.

From the user standpoint, lines are numbered starting from 1.

Keep this project in mind while you read through this chapter.

13.3 What are Files, Anyway?
Problem-solving step: Understanding the Problem.

We’re sort of used to them, already, right? I mean, you have MP3 files, GIF files, or MPEG files…

“So this guy comes up to me and he says, ‘What do you do?’

“ ‘Well,’ I says, ‘I work on computers.’

“An’ he says, ‘Wow—if you work on computers? Do you use files?’

“An’ I says, ’Do I use files? Why I use… ARJ files, GIF files, JPEG files, JAR files, RAR files,
PNG files, DOC files, MPEG files, TXT files, PUB files, PY files, LOG files…

“ ‘An’ I use files, files, files, files, files, files, files, files, files, files, files, files, files, files, files,
files, files, files, files, files, files, files, files… files all the time!’—Take shots! 11!”

—With sincere apologies to Jughead and The Hockey Song.

We’re going to take a look at files from a high level, look at how to do some basic operations on files, and
we’ll leave it there for now. Later we’ll revisit some more advanced techniques.

But what is a file actually?

Let’s start by saying a file is a collection of characters stored in a particular order on your disk or SSD on
your computer.

We’ve already seen a bunch of examples—our Python source files that we’ve been saving this whole time!
They’re sequences of characters stored in a specific order and saved on disk.

Now, files are actually far more general-purpose than that, but let’s start with this. We can always chase
the rabbit further down the rabbit hole later.

For this chapter, we’re going to use a type of file commonly called a text file. This is also just a sequence
of characters, just like a Python source file. But text files can be anything. Love letters, The Gettysburg



Chapter 13. Reading Files 134

Address, the lyrics for the latest hit single by that one band, the number 𝜋 computed to a million decimal
places, or whatever.

Technically, Python source files are text files, as well, but they’re a specific type. All Python source
files are text files, but not all text files are Python source files.

As a human, you can identify the type of file by its extension. That is, the part of the filename after the
last period in the file.

For Python, we’ve been using .py (pronounced “dot-pie”) as the extension, identifying this file as a Python
source file.

General text files use .txt (“dot-text”) as an extension. And you can make them with the same editor
you’ve been using to write Python code.

Go ahead and open a new file, and call it wargames.txt. Enter some text into it, like this:

What he did was great! He designed his computer so that it could learn from its own mistakes. So,
they’d be better the next time they played. The system actually learned how to learn. It could teach
itself!

Now, the question is, how do you run a Python program that reads this file in, and stores or manipulates
the data in memory?

13.4 Reading Files, The Classic Way
Problem-solving step: Understanding the Problem.

In many programming languages, there are three steps to reading a file:

1. Open the file for reading.
2. Read data from the file.
3. Close the file.

This is super-duper common.

What does it mean to “open” and “close” the file?

Well, it’s analogous to when you open the file in your editor, and then close it.

“Opening” is asking the operating system1 (OS) to give you access to the file. You can open for reading,
for writing, or both.

For this section, we’ll want to ask the OS to open the file for reading.

“Closing” the file is the opposite of opening. We’re telling the OS that we’re done with the file. The OS
does any cleanup it has to. You should always close any files you open. (All files that you open will
automatically be closed when your program completes its run, but you still should explicitly close them
anyway2.)

And “reading” is actually pulling the data from the file on disk into strings in memory.

Problem-solving step: Devising a Plan

Let’s write some code3 to read our wargames.txt file and print out the contents on the screen.

Our steps will be:

1. Open the file
2. Read the data
3. Close the file
4. Print the data
1The Operating System is like Linux, Windows, MacOS, Unix, etc. It’s a program that helps you, the user, interface with the

hardware on the system, like keyboards, screens, and disks.
2It’s a level of polish that other devs will expect. If they see you’re not thorough enough to close any files you open, they’ll

wonder what else you’ve missed.
3https://beej.us/guide/bgpython/source/examples/fileread1.py

https://beej.us/guide/bgpython/source/examples/fileread1.py


Chapter 13. Reading Files 135

Problem-solving step: Carrying Out the Plan

# Open the file
f = open("wargames.txt")

# Read all data from the file
data = f.read()

# Close the file
f.close()

# Print out the data we read earlier
print(data)

Some things to note:

• When we opened the file, we didn’t specify read or write. In Python, it’s “read” by default.
• Notice that we close the file before we print anything. We didn’t have to, but it demonstrates how
we now have a copy of the data in memory. We can still use it, even though we’ve closed the file.

Since we have a copy of the data, we can do all kinds of stuff to change it.

If you modify the last two lines to be:

# Print out the data we read earlier
print(data.upper())

we’ll get the output in uppercase. (But the original file is still lowercase, of course!) It’s our copy of the
data to do with as we please!

13.5 Opening Files with with

Now there is a more canonical4 approach to reading files using the with statement in Python.

Earlier, we read a file

f = open("wargames.txt")
data = f.read()
f.close()
print(data)

The equivalent using the with statement looks like this:

with open("wargames.txt") as f:
data = f.read()
print(data)

If you’re looking closely, you’ll notice that the f.close() is missing. That’s because when you use with
to open the file, that gets handled automatically for you! Not only that but even if some error occurs, the
file will be properly closed.

Although the pattern of open-read-close is really common in other languages and Python supports it, the
preferred way of doing things is with the fantastic with statement.

4Meaning, the One Right-ishWay to do something.



Chapter 13. Reading Files 136

13.6 Reading Data a Line at a Time
Check this out: in our previous examples, we read the entire file into memory at once. That’s what the
.read() method does.

For small files, that’s no problem.

But what if you have a file that’s 200 GB of data? You (probably, as of this writing in 2020) don’t have
that much memory. How can you deal with big files like this?

The answer is to read them a little bit at a time.

With text files like this, a common thing to do is to read them a line at a time. Then you process that line,
and then move on to the next one. This way you only need to have a single line from the file in memory
at once, instead of the whole 200 GB worth.

Let’s use the with statement to open a file, and then read a line at a time.

line_num = 1
with open("wargames.txt") as f:

for line in f:
print(f'{line_num}: {line}')
line_num += 1

And we get this output:

1: What he did was great! He designed his computer so that it could learn

2: from its own mistakes. So, they'd be better the next time they played.

3: The system actually learned how to learn. It could teach itself!

Pretty neat, eh? We just get to use a for loop on the opened file to read one line at a time.

But wait! Why is there an extra newline being printed out? What are those blank lines between the lines?

This is a common beginner mistake. The reason is that there is a newline at the end of every line of the
file already (because that’s where the line breaks are). And, in addition, print() adds its own newline!
So we get both of them printed.

The easiest workaround is to use the end keyword argument on print() to stop it from adding a newline
of its own:

print(f'{line_num}: {line}', end='')

Another option is to use .rstrip() on the string to strip newlines from the end.

line = line.rstrip('\r\n')

That’ll strip carriage returns or newlines from the right side of the string. We have to specify both since
some OSes use different characters to represent the end of the line, somewhat irksomely.

An even-more-portable way to write this is to first:

import os

then

line = line.rstrip(os.linesep)



Chapter 13. Reading Files 137

and Python will automatically use the proper end-of-line character no matter what system you’re running
the program on.

13.7 Writing files
Problem-solving step: Understanding the Problem.

So far we’ve been dealing with getting data out of files, but now let’s talk about creating a new file and
writing data to them.

This is how programs permanently save data that they need to use later. If you don’t save the data to disk,
then it all vanishes once the program exits.

The process is similar to reading, except when we open the file, we need to specify that we want to write.
(If we don’t tell open() otherwise, it assumes we’re opening for reading.)

WARNING: if you open an existing file for writing, the contents of that file is instantly lost!

Let’s open a file and write some data to it using the write() method.

with open("newfile.txt", "w") as f:
f.write("Hello, world!\n")

There we go! If you run this, then have a look, you’ll see a file called newfile.txt that has the magic
words in it.

Now you have the power to save data to disk and read it back again!

13.8 Chapter Project
If you need to, review the specification at the top of the chapter.

This project is a bit bigger than the others, eh? I mean, writing an entire editor is kinda biting off a lot,
isn’t it?

Sure! Yeah, it’s a lot. But we can do it using the problem-solving framework just like always.

Something else a little different here is that I’m not going to include line numbers in the listings. You’ll
have to work out the proper place to put the code based on my descriptions and what makes sense. With
practice, it should get clearer how things piece together.

Let’s start!

Problem-solving step: Understanding the Problem.

Review the spec from earlier if you have to, but the basic chunks of this program are:

• Parse the command line to get the filename
• Read a file
• Write a file
• Read user commands as input
• List the file on the screen
• Append lines to the file
• Edit existing lines
• Delete lines

So first, make sure we know what all those do.

Then we’ll attack.

Problem-solving step: Devising a Plan

We’re going to do something a little different this time. We’re going to make an overarching plan, and
then jump back and forth between Planning and Carrying Out the sub plans the larger plan is comprised
of.



Chapter 13. Reading Files 138

This is a little more like how software dev actually works. You have a general idea of where you’re going,
and you work out the details as you get to them.

This is a bit of a double-edged sword, and it takes practice and experience to get it right. You don’t
want to over-plan, because you’re undoubtedly going to have to change things and you don’t want
to waste your time. And you don’t want to under-plan, because then hidden gotchas might… get
you later. You want to plan just the right amount. Whatever that is.

In reality, devs consistently under-plan. And they still make it work somehow, likeMAGIC.

And by “MAGIC”, I mean tons of sweat, tears, and off-color language.

Being able to do this is a really, really important skill to practice. This is where software development
really happens. The rest of coding is just writing things down.

So let’s do the rough overall, based on the outline, above in Understanding The Problem.

• First we’ll get the filename from the command line.
• Then we’ll read the file.
• Then we’ll loop to get input for whatever it is the user wants to do (append, list, edit, write, etc.)
• For whatever the user enters, we’ll do that thing.
• When the user says q to quit, we’ll quit.

That’s a pretty loose plan. I mean, “We’ll do that thing,” isn’t exactly well-fleshed-out. But we know it’s
possible to do them, and we can work on those individual command components one at a time (since none
of them are really dependent on one another).

Looks like some of those we can work on right away.

Problem-solving step: Devising a Plan

Let’s start simple. Simplifying the problem is always a good way to get bits and pieces done. Also, getting
a minimum working piece going as soon as possible can help direct our efforts and keep motivation up.
Get a core piece in place, and then keep adding on.

What’s a simple version of the program?

Well, we could start by looking at the command line to see if there’s a filename there or not, and storing
it if there is.

Remember the user has the option to run the program without specifying a filename (since maybe they’re
creating a new file).

So we want to check the command line args in sys.argv. If the user specified a filename, we’ll store it.
If they didn’t, we’ll store None to indicate that case. If they specify more than one argument, we’ll print
out a usage message.

Great! Let’s go!

Problem-solving step: Carrying Out the Plan

import sys

# Parse the command line

if len(sys.argv) == 2:
filename = sys.argv[1]

elif len(sys.argv) == 1:
# We'll use this as a sentinel value later if we need to prompt for
# a filename when writing the file.
filename = None

else:
print("usage: lineedit.py [filename]", file=sys.stderr)



Chapter 13. Reading Files 139

sys.exit(1)

# Let's just print it here to make sure it's working
print(filename)

That last line is only there temporarily. This lets us test things out.

$ python lineedit.py
None

$ python lineedit.py test
test

$ python lineedit.py test something
usage: lineedit.py [filename]

Perfect. What’s next?

Problem-solving step: Devising a Plan

Looks like the next reasonable step is to read the file into memory so that we can manipulate it later.

So a couple of questions:

• How do we read a file?
• What do we store it in?

As for the first, hopefully, you’ve been reading this chapter and know about how to open a file for reading
and read individual lines from it.

But how to keep all those lines?

Think about all the data structures we’ve talked about so far… lists, dicts, objects… What is the file the
most like?

Go ahead and give it some thought before I spoil it in the next couple sentences.

You might argue that each line is like an object. And it is. It wouldn’t be wrong to have a class that
represents a line. But somehow you still need to store a list of lines.

Gah, what a giveaway!

Yeah, a list seems like a good idea. In a way, a text file is simply a list of lines.

So let’s read the file a line at a time, storing each into a list as we go.

This seems like a self-contained piece of code, so I’m going to go ahead and write a function that accepts
a filename as an argument, and then returns a list of all the lines in that file.

• Make an empty list
• Open the file
• For each line of the file, append it to the list
• Return the list

Problem-solving step: Carrying Out the Plan

def read_file(filename):
"""Read a file from disk"""
lines = []

with open(filename) as f:
for line in f:

lines.append(line)



Chapter 13. Reading Files 140

return lines

if filename is not None:
lines = read_file(filename)

else:
lines = []

# Print it out just to make sure it works right
print(lines)

Now if we run that, and specify an input filename, it should print out a list with all the lines in that file.

Of course, we need a sample input file. You can make one in VS Code—just edit a new file called
lines.txt and put whatever you want in it. (About five lines is good for testing.) If you don’t want to
bother, there’s a file lines.txt in the examples directory5.

Running it, we get our list, just like we wanted!

$ python lineedit.py lines.txt
['This is line 1\n', 'This is line 2\n', 'This is line 3\n',
'This is line 4\n', 'This is line 5']

$ python lineedit.py
[]

Take a moment to digest what we did there: we made a copy of the data that was on disk and stored that
copy in memory.

What’s next in the big overall plan? Looks like it might be time for a user-input loop.

Problem-solving step: Devising a Plan

This is like so many other input loops we’ve done so far:

• Print a prompt
• Parse the input
• Run the command
• Stop looping when the user says to quit

Problem-solving step: Carrying Out the Plan

Your standard input loop. All it does is let you type q:

# Main loop

done = False

while not done:
command = input("> ").strip()

if command[0] == 'q':
done = True

If you hit RETURN it pukes right away because command[0] isn’t a thing if the string is empty.

A common thing to do here is just print another prompt if the user enters a blank line. We can add this
after the input() line to do that:

5https://beej.us/guide/bgpython/source/examples/lines.txt

https://beej.us/guide/bgpython/source/examples/lines.txt


Chapter 13. Reading Files 141

# If the user entered a blank line, just give them another prompt
if command == '':

continue

And finally, let’s add some output as an else to tell the user if they input something we didn’t recognize:

else:
print("unknown command")

OK! Now if we run it, we should be able to handle blank lines, unknown commands, and q for quit.

$ python lineedit.py lines.txt
> x
unknown command
> [ user hit RETURN a few times here ]
>
>
> q
$

Not much of an editor so far, but Facebook wasn’t built in a day. We’re just slowly getting the pieces in
place.

What’s a good piece to do next? Lots of options, because now we’re to the point of implementing the
handlers for the various commands (besides the one for quitting, which we just did).

Personally, if we have things that display data and things that modify data, I prefer to do the ones that
display the data first. They’re less likely to mess things up (since we’re not modifying data), and if you
can’t display the data correctly, your odds of modifying it correctly are low, indeed.

So let’s hit up that “list” command that will show us lines from the file.

Problem-solving step: Devising a Plan

The list command takes a single argument representing the line number to start listing from. And then it
should list for 10 lines.

Since we have all the lines in a list already, this isn’t too entirely horrible. We just have to:

• Parse the starting position as entered by the user.
• If they entered a number less than 1, assume they meant 1.
• Start looping from that number, printing out 10 lines.
• If we hit the last line, stop printing.

Since we have all these different kinds of functionality, let’s put them in individual functions to keep the
code well organized.

We’ll make a handle_list() function that is called when the user asks to list the file. It’ll take a couple
of arguments: the arguments the user typed after a command, as well as the list of lines we’re going to
manipulate.

Problem-solving step: Carrying Out the Plan

Firstly, let’s check and see if the user wants to list lines by checking to see if the first letter of the command
is l. If it is, then it’s on.

But there’s an argument after the l, right? The user has to specify which line to start listing from. And
we have to get that into our handle_list() function somehow.

So let’s do two things. Let’s parse those arguments, if any, out of the overall command. We’ll use split()
to break the command apart on spaces, and then we’ll use a slice from [1:] (that is, from the second
element to the end) to get all the arguments.



Chapter 13. Reading Files 142

The result will have any arguments following the command in a list, or an empty list if there were no
arguments.

And then we’ll pass that to our handler function:

# Grab the arguments after the command
args = command.split(" ")[1:]

if command[0] == 'q':
done = True

# List lines
elif command[0] == 'l':

handle_list(args, lines)

And let’s code up a stub6 of the function to handle it, just to see if it’s working:

def handle_list(args, lines):
print(f'Handle list: {args}, {lines}')

Running, we get this:

$ python lineedit.py lines.txt
> l
Handle list: [], ['This is line 1\n', 'This is line 2\n',
'This is line 3\n', 'This is line 4\n', 'This is line 5\n']
> l 99
Handle list: ['99'], ['This is line 1\n', 'This is line 2\n',
'This is line 3\n', 'This is line 4\n', 'This is line 5\n']

So you can see that the lines are all coming in right. But, more importantly, our argument is coming in
right.

In the first call, it prints out as [] empty.

But on the second, we see ['99'] which is the number we told it to list.

We just have to extract that number somehow.

But before we do, we’d better test to see if the user entered an argument at all. It’s required for the list
command, after all.

Then we’ll use the start and end lines to print out everything in between.

def handle_list(args, lines):

if len(args) == 1:
# Compute start and end lines
start = int(args[0])
end = start + 10 # print 10 lines

else:
print("usage: l line_num")
return

# Print all the lines

6A function stub is a callable function that takes all the same arguments and, if necessary, returns a sensible value. But it doesn’t,
in fact, do anything of use. It’s a good way to test that your overall call flow is working right. And it gives you a nice, easy TODO
spot to fill out.



Chapter 13. Reading Files 143

for i in range(start, end):
# end="" to suppress newlines (since lines already have them)
print(f'{i}: {lines[i]}', end="")

Now, if we run this, we see a problem:

$ python lineedit.py lines.txt
> l 1
1: This is line 2
2: This is line 3
3: This is line 4
4: This is line 5
Traceback (most recent call last):

File "lineedit.py", line 71, in <module>
handle_list(args, lines)

File "lineedit.py", line 43, in handle_list
print(f'{i}: {lines[i]}', end="")

IndexError: list index out of range

So clearly things have gone awry. There’s that huge error message that’s dominating the accident scene
and it’s hard to notice anything else other than the lines of the file being printed at the top.

At least nothing went wrong before that error, right?

…Or did it?

Notice anything weird about those first printed lines? Sure, the numbers start at 1, but the first line says
This is line 2! That sets off some alarm bells. (Especially since when you opened the file in your real
editor, you see the first line says This is line 1.)

Problem-solving step: Understanding the Problem.

We have two problems.

1. That list index out of range error
2. Our off-by-one error7 that’s causing our lines to be off by one.

Yes, off-by-one errors are famous enough to have their own Wikipedia page.

As the name suggests, our computations are one-off. But why? How?

This is a really common disagreement between humans and computers. We humans like to have our lists
start at index “1”, and computers like them to start at index “0”. It’s the age-old battle. Even the Romans
started with “I”, but that was mainly because Roman numerals didn’t have a character for zero until 725
AD—latecomers!

And in this case, we have a human entering numbers that start indexing at “1”. And we print them out for
the human to see starting with index “1”…

But in Python, the lines are in a list starting from index “0”!

Problem-solving step: Devising a Plan

We need to do some math.

• When we want to go from a human (1-based) index to a computer (0-based) index, we subtract one
from the number. 1 becomes 0.

• When we want to go from a computer (0-based) index to a human (1-based) index, we add one from
the number. 0 becomes 1.

Since we’re using start and end to index the list, I feel a bit better having them 0-based because the list
is 0-based.

There’s a general rule of thumb at play here:
7https://en.wikipedia.org/wiki/Off-by-one_error

https://en.wikipedia.org/wiki/Off-by-one_error


Chapter 13. Reading Files 144

• When a user enters a 1-based number, convert it to 0-based as soon as you can for internal use in
the program.

• When you have to display a 1-based number, keep it 0-based for as long as you can, and only convert
it at the last second when you output it.

Keeping these conversions to a minimum and doing them only on input and output can save you a lot of
headaches.

What not to do: don’t just jump in and start adding +1s and -1s all over the place and hoping for the best.
That way lies madness, assuredly. Stop, understand, and plan. And then carry it out.

Problem-solving step: Carrying Out the Plan

I’m going to write a little helper function here to convert from 0-based to 1-based since I think we’re going
to be using this all over the place. And it helps clarify the code a bit; instead of having a bunch of +1s and
-1s all over, you have a function name that has some meaning to future readers.

def one_to_zero(n):
"""Convert a number from a 1-based index to a 0-based index."""
return n - 1

And now we can make use of that. Let’s make start 0-based and try it out.

start = one_to_zero(int(args[0]))

Now running it gives:

$ python lineedit.py lines.txt
> l 1
0: This is line 1
1: This is line 2
2: This is line 3
3: This is line 4
4: This is line 5
Traceback (most recent call last):

File "lineedit.py", line 76, in <module>
handle_list(args, lines)

File "lineedit.py", line 48, in handle_list
print(f'{i}: {lines[i]}', end="")

IndexError: list index out of range

Same pukey error, but let’s look at the lines before then. The good news is we’re getting all the lines
printed. The bad news is that the line number on the left is in computer 0-based land, and we need it in
human 1-based land. Let’s add another helper function:

def zero_to_one(n):
"""Convert a number from a 0-based index to a 1-based index."""
return n + 1

And then let’s call that in our print output line:

print(f'{zero_to_one(i)}: {lines[i]}', end="")

Now a run gives:

$ python lineedit.py lines.txt
> l 1
1: This is line 1



Chapter 13. Reading Files 145

2: This is line 2
3: This is line 3
4: This is line 4
5: This is line 5
Traceback (most recent call last):

File "lineedit.py", line 80, in <module>
handle_list(args, lines)

File "lineedit.py", line 52, in handle_list
print(f'{zero_to_one(i)}: {lines[i]}', end="")

IndexError: list index out of range

Bam! That’s what we want. All lines printed with correct line numbers.

Now, what about that error? It’s telling us the list index is out of range, which isn’t too surprising since
it’s going off the end of the file.

Before our for-loop, let’s just add some code that makes sure the start and end are sane. (Remember
we’ve decided that they are 0-based indexes.)

# Make sure start isn't before the beginning of the list
if start < 0:

start = 0

# Make sure end isn't past the end of the list
if end > len(lines):

end = len(lines)

And then you can run the for-loop after that with impunity!

$ python lineedit.py lines.txt
> l 1
1: This is line 1
2: This is line 2
3: This is line 3
4: This is line 4
5: This is line 5
> l 3
3: This is line 3
4: This is line 4
5: This is line 5
>

Perfection! That’s the list functionality complete!

Things only tend to get easier from here on out. The first part of the implementation is the worst, but now
we just have variants on a theme:

1. Check for the proper command on input
2. Pass the args to a handler function for that command
3. Build out the handler function
4. Repeat

What’s the next simplest thing to work on? How about “delete a line”?

Problem-solving step: Understanding the Problem.

So we want to delete a single line. This is as easy as removing an element from the list containing all the
lines.

We just need to know the element number to remove.

Of course, the user enters it after the d command, so we can grab it from there.



Chapter 13. Reading Files 146

But remember: what the user enters is 1-based! We have to convert it to 0-based before we use the number
to delete a line… otherwise we’ll delete the wrong line.

Problem-solving step: Devising a Plan

So we should be able to:

• Add a handler to the main input loop
• In the delete handler, get the line to delete
• Convert it to 0-based
• Delete that line from the list of lines

A little digging in the help reveals that the pop()method removes an element from a list at a given index:

pop(self, index=-1, /)

Remove and return item at index (default last).

Problem-solving step: Carrying Out the Plan

To our main input loop, let’s go ahead and add a call to the handler if the user requests a deletion:

# Delete a line
elif command[0] == 'd':

handle_delete(args, lines)

And now let’s write the delete handler. This is going to be similar to the line listing handler at first: we
have to get the line number the user entered, and convert it to 0-based.

And then make sure it’s in range.

And then delete that line with the pop() method.

def handle_delete(args, lines):
"""Delete a line in the file."""

if len(args) == 1:
# Get the line number to delete
line_num = one_to_zero(int(args[0]))

else:
print("usage: d line_num]")
return

# Make sure we're in range
if line_num < 0 or line_num >= len(lines):

print("no such line")
return

# Delete the line
lines.pop(line_num)

And that’s all there is to it. Let’s try it:

> l 1
1: This is line 1
2: This is line 2
3: This is line 3
4: This is line 4
5: This is line 5



Chapter 13. Reading Files 147

> d 3
> l 1
1: This is line 1
2: This is line 2
3: This is line 4
4: This is line 5
> d 0
no such line
> d 5
no such line

Looks good!

What’s next easiest? Probably the “edit” functionality.

Problem-solving step: Understanding the Problem

When we edit a single line, we want to replace the element in the lines list completely with a new element
that we input from the keyboard.

The only line is thrown away.

For this, the user enters e for “edit”, followed by a line number.

Problem-solving step: Devising a Plan

Let’s do the same as with delete, except that instead of using pop() to remove a line, we’ll just use
input() to get another one and store it directly on the list.

Problem-solving step: Carrying Out the Plan

Firstly, let’s add that command handler to the main loop:

# Edit a line
elif command[0] == 'e':

handle_edit(args, lines)

Secondly, let’s implement the edit handler. Same code and rationale until the last line:

def handle_edit(args, lines):
"""Edit a line in the file."""

if len(args) == 1:
# Get the line number to edit
line_num = one_to_zero(int(args[0]))

else:
print("usage: e line_num")
return

# Make sure we're in range
if line_num < 0 or line_num >= len(lines):

print("no such line")
return

# Edit the line
lines[line_num] = input()

Notice how we just replace the named line in the list with whatever line is returned by input().

Let’s try it!



Chapter 13. Reading Files 148

> l 1
1: This is line 1
2: This is line 2
3: This is line 3
4: This is line 4
5: This is line 5
> e 2
NEW LINE 2!
> l 1
1: This is line 1
2: NEW LINE 2!3: This is line 3
4: This is line 4
5: This is line 5
>

Wait a second! Lines 2 and 3 are all bunched up after I edited it! That can’t be right.

Problem-solving step: Understanding the Problem

This all ties back to the newlines we keep at the end of lines in the list.

Remember that we’re storing each line with the newline attached to the end.

But input() strips the newline off! Not what we were after.

Problem-solving step: Devising a Plan

So we have to add the newline to the end of the, er, new line that we just entered. We’ll just tack it on
with the + string concatenation operator.

Problem-solving step: Carrying Out the Plan

Modify the last line of the handle_edit() function to add the newline:

# Edit the line, adding a newline to the end (since input() strips
# it off).
lines[line_num] = input()# + '\n'

And done with that one!

What’s the next easiest thing to code up? Well, looks like there’s only one more editing command: “ap-
pend”.

Problem-solving step: Understanding the Problem

This one’s a little different. It looks like we go ahead and read the line to append just like with any other
command. But then we go into a weird mode where we repeatedly enter lines until the user enters a single
period on a line by itself.

And each of those lines are appended in turn.

If the user says to append after line 0, the lines should be inserted at the top of the file.

Problem-solving step: Devising a Plan

So let’s go ahead and do the usual command-line parsing to see which line we want to insert after.

And then let’s loop until the user enters a single period.

Inside the loop, we’ll read a line and append it into the list in the right place.

Looking at the documentation, there is an append() method for lists, but it only appends onto the end of
the list.

We want ours to be able to do that, but also to be able to put those lines in the middle, or at the top.

Let’s keep looking down the documentation.



Chapter 13. Reading Files 149

There’s insert() to put an object before an index. This seems to work for the beginning and the middle,
but what about appending to the end? Do we have to use the append() method in that special case?

The docs aren’t entirely clear on the matter. Let’s bring up the REPL and try some tests.

I’ll make a list and then try to insert() values in various places.

First, let’s try inserting before element 0, which should insert at the beginning:

>>> a = [11, 22, 33]
>>> a.insert(0, 99)
>>> a
[99, 11, 22, 33]

Great! The 99 went in first, just like I wanted.

Let’s insert another number before index 2:

>>> a.insert(2, 999)
>>> a
[99, 11, 999, 22, 33]

That worked, too.

Now, the list only has up to element index 4… but let’s go out on a limb and try inserting before index 5
(which doesn’t exist) and see if that appends on the end:

>>> a.insert(5, 9999)
>>> a
[99, 11, 999, 22, 33, 9999]

Yes! It worked! We don’t have to special-case a call to append().

It is a little weird, but if you put any index past the last one in for append, it’ll put the value at the end of
the list.

If we make a small list and try to insert the value 3490 at index 99, it just puts it at the end:

>>> a = [1, 2, 3]
>>> a.insert(99, 3490)
>>> a
[1, 2, 3, 3490]

This kind of experimentation to see what works and what doesn’t is really common, and is a great way to
explore and learn how the system works.

Ok, so we:

• Get the line number to append after. Remember that we want this to be zero-based, so we’ll subtract
1 from whatever they enter. If they enter “2”, that means that we want to insert after index 1.

• But since the insert()method inserts before a line, not after, we’d better add one to the line index
so that we append after that line.

• Then we loop until the user enters a period, inputting a line and inserting it into the list in the right
place.

Now, you might wonder why bother subtracting one just so we could add one right after?

And you’re right—it does nothing. We don’t have to do that.

But there’s an argument to be made that it’s clearer to a future reader of the code. We clearly subtract one
to get to a 0-based indexing method as soon as possible. And we add one to get insert() to insert after a
line instead of before it. Two different reasons to do the arithmetic clearly spelled out. If we were to just
leave them both off, that information wouldn’t be obvious to the next developer reading the code.



Chapter 13. Reading Files 150

Problem-solving step: Carrying Out the Plan

First, let’s do our standard parsing of the command argument:

def handle_append(args, lines):
"""Append a line in the file."""

if len(args) == 1:
# Get the line number to append at. +1 because we want to line_num
# adding lines one _after_ the specified line.
line_num = one_to_zero(int(args[0]))

else:
print("usage: a line_num")
return

Then, continuing down the function, do our adding one:

# +1 because we want to line_num adding lines one _after_ the
# specified line.
line_num += 1

Then, continuing again, let’s put in our loop to read lines until the user enters a period, and insert them
into the correct location in the list.

done = False

# We're going to loop until the user enters a single `.` on a line
while not done:

# Read a line of input
line = input()

# Check if we're done
if line == '.':

done = True
continue # Jump back to the `while`

# Otherwise, insert the line, adding a newline to the end (since
# input() strips it off).
lines.insert(line_num, line + '\n')

# And now on to the next line
line_num += 1

All right, let’s test it. Let’s insert lines at the beginning:

> l 1
1: This is line 1
2: This is line 2
3: This is line 3
4: This is line 4
5: This is line 5
> a 0
NEW line 1
NEW line 2
.



Chapter 13. Reading Files 151

> l 1
1: NEW line 1
2: NEW line 2
3: This is line 1
4: This is line 2
5: This is line 3
6: This is line 4
7: This is line 5

Works!

Let’s insert lines in the middle:

> a 4
NEW line in the middle
.
> l 1
1: NEW line 1
2: NEW line 2
3: This is line 1
4: This is line 2
5: NEW line in the middle
6: This is line 3
7: This is line 4
8: This is line 5

Works!

Let’s insert some lines at the end:

> a 8
NEW end line 1
NEW end line 2
.
> l 1
1: NEW line 1
2: NEW line 2
3: This is line 1
4: This is line 2
5: NEW line in the middle
6: This is line 3
7: This is line 4
8: This is line 5
9: NEW end line 1
10: NEW end line 2

Also works! Woot!

Although it’s not automated, this is good test coverage. We looked at the common case (insert in the
middle), but we also looked at the edge cases (insert at the beginning and end) just to make sure those
worked properly. When testing, always think about which cases aren’t common and test those explicitly.

Now there’s but one thing remaining: saving the file to disk with the “w” (write) command.

Problem-solving step: Understanding the Problem

We already wrote some code back in the day to read a file a line at a time and store the results in a list.

This time, we want to do the opposite. Go through our list and write the file a line at a time until we’re
done.

Problem-solving step: Devising a Plan



Chapter 13. Reading Files 152

Compared to the append command, this is cake.

• Open the file for writing
• Loop through all the lines
• Write each line to the file

Also:

• Hook up the “w” command in the main input loop.

And:

• Parse the argument from the “w” command to get the filename

Since “write a bunch of lines to disk” is a good self-contained operation, I plan to write a function that
does just that and nothing more. I’ll write a different function to get called when a write is requested
which will make sure the args are correct and so on. Keep it modular!

Problem-solving step: Carrying Out the Plan

First, let’s add a function to write the file to disk. As arguments, it’ll take the list of lines to write and a
filename to write it to.

When we open the file, we’ll pass the "w" argument to it to indicate that we’re writing this file.

Note that as soon as you open a file for writing, it erases that file if it exists. But this should be OK in this
case since we’re about to write it again.

And since every line already has a newline at the end, we don’t have to add one when we write it to disk.

def write_file(lines, filename):
"""Write a file to disk"""
with open(filename, "w") as f:

for line in lines:
f.write(line)

Now let’s write the handler for the command. This will check if the arg was specified and print an error
if not. And then write the file.

def handle_write(args, lines):
"""Handle the write command"""

if len(args) == 1:
filename = args[0]

else:
print("usage: w filename")
return

write_file(lines, filename)

Lastly, we need to add a handler to the main command loop so that when we type “w”, it saves the file:

# Write (save) the file
elif command[0] == 'w':

handle_write(args, lines, filename)

And that’s that!

Problem-solving step: Looking Back

There are a lot of things we can do to improve the code here.

• Add the option for the delete command to specify an ending as well as a starting line to erase a block
of lines at once.



Chapter 13. Reading Files 153

• Make it so that if the user specifies a filename on the command line and does not specify one after
the write command, it writes to the same file specified on the command line.

• Add an insert command that works like append, except it puts the new material before the line
specified. How can you do this with minimal addition of code? After all, append and insert are very
similar.

What’s crazy is that you can use this to write Python programs. Let’s do one!

$ python lineedit.py
> a 0
print("Hello, world!")
print("I wrote this with my own editor!")
.
> l 1
1: print("Hello, world!")
2: print("I wrote this with my own editor!")
> w my_hello.py
> q
$ python3 my_hello.py
Hello, world!
I wrote this with my own editor!
$

Well, you can probably tell that’s not quite as easy as using VS Code (or any other editor, for that matter).
But, believe it or not, line editors were the way to enter programs for a long time.

Be thankful for standing on the shoulders of giants!

(Solution8.)

13.9 Exercises
Remember: to get your value out of this book, you have to do these exercises. After 20 minutes of
being stuck on a problem, you’re allowed to look at the solution.

Use any knowledge you have to solve these, not only what you learned in this chapter.

Always use the four problem-solving steps to solve these problems: understand the problem, devise a
plan, carry it out, look back to see what you could have done better.

1. You’ve been misbehaving in class and the teacher sentences you to write 500 lines as punishment.
Shrewdly, you ask if you can type the lines, and the teacher agrees9.

The program should accept command line arguments of the filename to output to and the number of
lines. All command line arguments after that are the punishment line itself that should be repeated
that many times in the output file.

For example:

python writelines.py outfile.txt 500 I will not talk in class.

would generate a file outfile.txt with the line

I will not talk in class.

repeated 500 times.
8https://beej.us/guide/bgpython/source/examples/lineedit.py
9True story. This was back when I was in the 7th grade and computers were a bit of a novelty. We had a daisywheel printer at

home which was fairly indistinguishable from a typewriter. In real life, though, I didn’t write a program to generate the lines. I told
dad about the task, and he rolled his eyes and showed me how to copy and paste in WordStar.

https://beej.us/guide/bgpython/source/examples/lineedit.py


Chapter 13. Reading Files 154

WARNING: Apostrophes and quotes (and other punctuation) often have special meaning to the
shell. Avoid any characters other than periods or you might get strange results. If weird things
happen, hit CTRL-c to get out of it.

(Solution10.)

2. Write a program to read comma-separated values (CSV) files.

A CSV file has a bunch of values separated by commas, one record per row.

Here’s the file we want to read11. Look through it and see how all the information for a particular
record is in each row:

Title,Release Year,Studio,Publisher
Minecraft,2011,Mojang,Microsoft Studios
M.U.L.E.,1983,Ozark Softscape,Activision
X-Men The Official Game,2006,Z-AXIS,Activision
Populous,1989,Bullfrog Productions,Electronic Arts
DOOM,1993,id Software,id Software
Lemmings,1991,DMA Design,Psygnosis

Your goal is to read the file and store each record in an object. (Make a class that defines the same
fields you have in the CSV file to instantiate the objects from.)

Then print out the data, like so:

M.U.L.E. 1983 Ozark Softscape Activision
Populous 1989 Bullfrog Productions Electronic Arts
Lemmings 1991 DMA Design Psygnosis
DOOM 1993 id Software id Software
X-Men The Official Game 2006 Z-AXIS Activision
Minecraft 2011 Mojang Microsoft Studios

The printout, above, is shown in sorted-by-year order. That’s a stretch goal if you want to take it on.
(Hint: check out the key keyword argument to the .sort() method. Also, the solution code talks
about it in detail.)

Also, incidentally, M.U.L.E.12 is one of the greatest games ever written. Despite it being over 25
years old, PC World magazine rated it the 5th-greatest game of all time in 2009. If you haven’t
played it, grab an Atari 800 emulator, four gamepads, and four friends, and have some fun. (Or
play solo against the computer.)

Now, a quick word of warning: this exercise assumes you’re going to implement the logic for
parsing this file yourself. But in real life, in Python, you’d never do this. Python has built-in
functionality to parse CSV files, and it’s far more robust and correct than what we’re doing
here. We’re just reinventing the wheel in this case as a programming exercise.

Notice that the first line of the CSV file is a header. It describes what the columns are, but isn’t
actual data. You’ll have to skip this line when you’re reading the file. (Hint: call the next()
function on the file iterator returned by open() to get the next line one time at the beginning.)

(Solution13.)

3. Modify your multiplication table generator from the chapter on strings to save the table to disk
instead of printing it to the screen.

The program should accept both the dimension of the table and the output filename on the command
line, e.g.:

10https://beej.us/guide/bgpython/source/examples/ex_writelines.py
11https://beej.us/guide/bgpython/source/examples/games.csv
12https://en.wikipedia.org/wiki/M.U.L.E.
13https://beej.us/guide/bgpython/source/examples/ex_simplecsv.py

https://beej.us/guide/bgpython/source/examples/ex_writelines.py
https://beej.us/guide/bgpython/source/examples/games.csv
https://en.wikipedia.org/wiki/M.U.L.E.
https://beej.us/guide/bgpython/source/examples/ex_simplecsv.py


Chapter 13. Reading Files 155

python multtablefile.py 12 table12x12.txt

(Solution14.)

4. Write a program to count the number of words in a file specified on the command line. The number
of words should be printed out.

This is a simplified clone of the Unix wc (word count) command.

For this one, we’ll define a word as something separated by whitespace. (Hint: the .split() string
method15.)

Example (wargames.txt is in the examples directory16):

$ python ex_wc.py wargames.txt
38

(Solution17.)

5. Write a program that sorts lines of a file in alphabetical order and prints the result on the screen.
Note that you don’t need to alphabetize every word in each line—just treat the line as one big word
to be alphabetized.

This is a simplified version of the Unix sort command.

Example run:

$ python ex_sort.py rocks.txt
amphibolite
andesite
argillite
basalt
breccia
chalk
chert
claystone

(And so on. The rocks.txt file has more lines in it than I’ve shown here.)

(Solution18.)

13.10 Summary
What a chapter! That was like a 50% project, eh?

But look at what we learned!

We covered how to open and read and write text files. We talked about how to read and write a line at a
time, as well.

And we wrote a simple line-based text editor! Most developers go their entire careers without doing that.

More Python goodness in the next chapter—see you there!

14https://beej.us/guide/bgpython/source/examples/ex_multtablefile.py
15https://docs.python.org/3/library/stdtypes.html#str.split
16https://beej.us/guide/bgpython/source/examples/wargames.txt
17https://beej.us/guide/bgpython/source/examples/ex_wc.py
18https://beej.us/guide/bgpython/source/examples/ex_sort.py

https://beej.us/guide/bgpython/source/examples/ex_multtablefile.py
https://docs.python.org/3/library/stdtypes.html#str.split
https://docs.python.org/3/library/stdtypes.html#str.split
https://beej.us/guide/bgpython/source/examples/wargames.txt
https://beej.us/guide/bgpython/source/examples/ex_wc.py
https://beej.us/guide/bgpython/source/examples/ex_sort.py


Chapter 14

Exceptions

14.1 Objective
• Learn about different ways of handling errors
• Understand what exceptions are
• Write programs that catch exceptions
• Throw your own exceptions

14.2 Project
Write a program called head.py that returns the first few lines of a file. For example, if the user enters:

python head.py filename.txt 12

it should show the first 12 lines of filename.txt.

Take extra care to error-check all the input. Catch any exceptions that might occur.

Spend some time thinking about this; what are all the things that can go wrong with any user input?

If there is some kind of error condition, the program should print an appropriate error message and exit.

14.3 Errors in Programs
Problem-solving step: Understanding the Problem

Let’s stop and think about this from a conceptual standpoint for just a minute.

Normally, a program produces data in the way you’ve asked for it. Unless something goes wrong. In
which case, it produces “bad” data.

Now, computers don’t really have much sense of right and wrong, as you’ve seen in the documentary The
Terminator. So how can we differentiate between good and bad data?

How can we tell that something’s gone wrong?

14.4 Classic Error Handling
Problem-solving step: Understanding the Problem

There’s one way we’ve been using so far: the return value from a function. If it’s a particular sentinel
value that we’re on the lookout for, we can use that to determine success or failure.

For example, let’s check out the .find()method on strings. This returns the index in a string that a given
substring can be found. For example:

156



Chapter 14. Exceptions 157

s = 'Bears, beets, Battlestar Galactica'

x = s.find('beets')

print(x) # 7, because that's the index 'beets' starts at in the string

The return value there of 7 is “good” data. We asked for a thing and we got it. But what if something goes
wrong?

s = 'Bears, beets, Battlestar Galactica'

x = s.find('Dwight')

print(x) # -1, because the substring isn't found

-1 here is the sentinel value we’re looking for to tell us if there’s an error.

We can make decisions on it. This is what I’d call “classic” error handling. This is the way people used
to handle errors when Stonehenge was built. And, like Stonehenge, this method of handling errors is still
in use to this day. If it ain’t broke, don’t fix it.

OK, yes, I admit Stonehenge is broke. Allow me my analogy!

s = 'Bears, beets, Battlestar Galactica'

x = s.find(substring)

if x == -1:
print(f"Couldn't find {substring}")

else:
print(f"Found {substring} at index {x}")

There! We successfully handled an error the classic way.

But now let’s learn another way.

14.5 Error Handling with Exceptions
Problem-solving step: Understanding the Problem

Exceptions are another way of indicating that something’s gone wrong.

We’ve already seen some of these. For example, if we run code that does this:

int("Hello!") # Convert Hello! to integer

Python’s going to be upset. "Hello!" isn’t a number it’s ever heard of. And when we run it, we get this
message, and the program exits:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 10: 'Hello!'

That’s an exception in action. We tried some code, and it raised an exception to tell us that what we were
doing just wasn’t going to work.

Exceptions are raised (also sometimes said to be thrown) for all kinds of things in Python.

Try to open a nonexistent file for reading:



Chapter 14. Exceptions 158

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

FileNotFoundError: [Errno 2] No such file or directory: 'keyser_soze.txt'

Try to divide a number by zero:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ZeroDivisionError: division by zero

Those first condensed words on the last line of the exception you see there? That’s the name of the
exception that occurred.

ValueError
FileNotFoundError
ZeroDivisionError

So, like using return values to indicate errors, exceptions also indicate that an error occurred.

Now—how do we detect that and do something with it?

14.6 Catching Exceptions
Problem-solving step: Understanding the Problem

Bear with me, because this code is a little different in how it gets executed.

We’re going to use two new statements in conjunction: try and catch. Let’s jump right in with an
example that we can dissect:

1 try:
2 x = input("Enter a number: ")
3

4 x = int(x) # Convert to integer
5

6 print(x * 1000)
7

8 except ValueError:
9 print(f'error converting "{x}" to integer')

What’s happening there? Look at the big blocks first. We have a try block and an except block.

Think of the try block as the code you want to execute in your shiny dreamworld where your user enters
correct information every time.

Like the user enters 3490, and it converts to integer just fine, and then you print out 3490000.

Perfect.

But what if the user enters beans instead of a number? int() is going to freak out and raise a
ValueException, just like we saw earlier.

Here’s the magic. If that happens, execution of the try block will stop immediately, and Python will
transfer control to the matching except block, if it exists.

So for example, here’s a successful run:

Enter a number: 3490
3490000

and here’s a run where an exception is thrown:



Chapter 14. Exceptions 159

Enter a number: beans
error converting "beans" to integer

See how it transferred control right into the except block?

That’s how we handle exceptions!

14.7 Catching Multiple Exceptions
Problem-solving step: Understanding the Problem

What if your try block throws multiple exceptions?

Turns out you can catch multiple exceptions just by having multiple except clauses.

Let’s try a program that divides a number by another:

x, y = input('Enter two numbers separated by a space: ').split()

x = int(x)
y = int(y)

print(f'{x} / {y} == {x / y}')

What are the exceptions that can be thrown?

Good question. Although there is a list of built-in exceptions1, it’s not immediately obvious which one
gets raised when.

The easy thing to do is try it in the REPL. But try what?

Think like a villain. What are the things that can go wrong? What kinds of bad input can you pass this
program?

Give it some thought. I count four things that can go wrong with bad user input. Can you see them?

Well, we’re taking input, running it through .split(), and then assigning the results into two variables.
So the split() better return a list of length 2, or something bad is going to happen.

I’m going to put that line of code into the REPL and see what it says if I enter something that’s not two
numbers separated by a space.

>>> x, y = input("Enter 2 numbers: ").split()
Enter 2 numbers: 1
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: not enough values to unpack (expected 2, got 1)

Check it out! I entered a single number, and it raised ValueError exception (with a message saying there
weren’t enough values).

Let’s try too many values:

>>> x, y = input("Enter 2 numbers: ").split()
Enter 2 numbers: 1 2 3
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: too many values to unpack (expected 2)

ValueError again! That means we can do something like this to catch it:

1https://docs.python.org/3/library/exceptions.html

https://docs.python.org/3/library/exceptions.html


Chapter 14. Exceptions 160

try:
x, y = input('Enter two numbers separated by a space: ').split()

x = int(x)
y = int(y)

print(f'{x} / {y} == {x / y}')

except ValueError:
print("That's not two numbers separated by a space!")

And that will catch it. Here’s a run:

Enter two numbers separated by a space: 1 2 3
That's not two numbers separated by a space!

Whee!

What’s the next place we can mess things up?

Well, we’re converting to int()… what does that function do if we pass in something awful, like the
word manfrengensenton?

Again in the REPL:

>>> int("manfrengensenton")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: 'manfrengensenton'

Hey, it’s ValueError again! Conveniently, we’re already catching that with an appropriate error message.
Totally handled.

That takes care of three of the four cases I saw where we could get exceptions. What’s the fourth?

Mathematics hat on. Do you see it?

That’s right, we’re dividing there… and you can’t divide by zero. What happens when we do?

We already saw, above, that we get a ZeroDivisionError. So let’s add that to the end of our code:

try:
x, y = input('Enter two numbers separated by a space: ').split()

x = int(x)
y = int(y)

print(f'{x} / {y} == {x / y}')

except ValueError:
print("That's not two numbers separated by a space!")

except ZeroDivisionError:
print("Can't divide by zero!")

So as you can see, you can handle as many different types of exceptions as you want in their own except
clauses after the try.



Chapter 14. Exceptions 161

14.8 Catching Multiple Exceptions II
If you want to handle multiple exceptions with the same handler code, you can make a list of them:

except (FileNotFoundError, PermissionError):
print("File not found or insufficient permissions")

This isn’t as frequently used, since often you want to take a different course of action for different excep-
tions.

14.9 Getting More Exception Information
Each exception is actually an instance of a class. And the class name is the name you use in your except
clauses.

Because it’s an instance, it has some additional information attached to it we can grab, but first, we have
to bind it (assign it) to a variable name. We can do that with the as statement.

try:
1 / 0

except ZeroDivisionError as e: # e is a reference to the exception
print(e)
print(repr(e)) # Print its representation

results in:

division by zero
ZeroDivisionError('division by zero')

That could be useful for getting more detailed information. In our example in the previous chapter, we
catch ValueError, but we saw three different circumstances that could lead to it. We could use this
technique to give the user more detailed information about the nature of the exception, should we choose.

All exceptions have an attribute called args that is a list of the arguments that are passed to the exception
when it was created. The first of these is often a human-readable error message.

For instance, this code:

try:
1 / 0

except Exception as e:
print(e.args[0])

prints the helpful message:

division by zero

Furthermore, any exception that is based on IOError includes the string attribute strerror that contains
a human-readable error message corresponding to the error. You can find the list of exceptions that are
derived from IOError in the exceptions documentation2.

14.10 Catching All Exceptions
A catch statement that doesn’t specify a particular exception will catch all previously uncaught excep-
tions.

2https://docs.python.org/3/library/exceptions.html

https://docs.python.org/3/library/exceptions.html


Chapter 14. Exceptions 162

For this reason, a blank catch should definitely be last, after all the other catches. Python will stop at the
first catch that matches, even if it’s a “catch all”.

When you’re in any catch, you can look at the results from the built-in function sys.exc_info(). This
function returns a tuple (think “list” for now, if you’re not familiar with tuples) with three pieces of infor-
mation: the type of the exception, a reference to the exception itself, and a traceback3

Let’s mod our division program to catch all exceptions and print out the exception info:

import sys

try:
x, y = input('Enter two numbers separated by a space: ').split()

x = int(x)
y = int(y)

print(f'{x} / {y} == {x / y}')

except:
print(sys.exc_info())

Here are some sample runs:

Enter two numbers separated by a space: 1
(<class 'ValueError'>, ValueError('not enough values to unpack (expected
2, got 1)'), <traceback object at 0x7f7899794f80>)

Enter two numbers separated by a space: a b
(<class 'ValueError'>, ValueError("invalid literal for int() with base
10: 'a'"), <traceback object at 0x7f6d0c9732c0>)

Enter two numbers separated by a space: 1 0 (<class
'ZeroDivisionError'>, ZeroDivisionError('division by zero'), <traceback
object at 0x7fe2ea373040>)

This isn’t as common, to catch and examine exceptions in this way. But it is another tool in your toolbox.

Be careful with catch-alls. They might hide exceptions that you weren’t expecting and should have let
through. They’re rare in practice.

14.11 Finally finally
Problem-solving step: Understanding the Problem

There’s a greater structure to be found here. We’ve already talked about try and catch, but there’s a way
to add code that runs after the try no matter what, regardless of whether or not an exception occurred.

It’s the finally clause, and it comes after the except clause(s).

Again, this block of code will run no matter what.

try:
print(1/1)

except ZeroDivisionError:

3A traceback, also known as a stack trace, is a list of all the function calls that have taken place to get to this point. It’s really
useful information for debugging.



Chapter 14. Exceptions 163

print("Divide by zero!")
finally:

print("All done!")

The above code will print:

1
All done!

If we modified that first line to print(1/0), we’d get a divide by zero exception and the output would
be:

Divide by zero!
All done!

In all cases, the finally block will run.

You can use this block to execute finalization or cleanup code if you need to.

try-except is really common. finally is less so, but not entirely uncommon.

14.12 What Else? else!
Problem-solving step: Understanding the Problem

Just when you thought try-except-finally was all she wrote, turns out we can add an else in there
for try-except-else-finally.

It’s entirely possible that you won’t ever see this, but I wanted to quickly touch on it here. Just glance at
it:

try:
print("This is what we're trying to do")
print("and where exceptions might occur.")

except:
print("Caught an exception!")

else:
print("This only runs if there was no exception.")

finally:
print("This runs no matter what.")

Using else can give you more control over the flow of your program when exceptions occur.

14.13 Exception Objects
Problem-solving step: Understanding the Problem

At this point, we’ve covered catching exceptions, and this is all you need to know 99% of the time you’re
using Python.

But that doesn’t mean we should stop there. Part of being a good dev is having a good mental model of
how these things work, not just to memorize some patterns to use. Having a deeper understanding will
serve you well.

So let’s talk about how exceptions in Python are represented by objects.

We’ve already hinted at this, above, where we talk about getting more information from exceptions.



Chapter 14. Exceptions 164

We found there is a class named ZeroDivisionError and another named ValueError. Indeed, we can
just make new ones of these if we want:

e = ValueError() # Construct a new ValueError object

There’s a whole list of exceptions that are ready to use4, but if none of those seem to fit, you can just make
a new Exception with some information passed to it:

e = Exception('Something went horribly awry')

Lastly, you can make your own new exception classes if you’d like. You don’t have to—you can use
Exception or any of the other preexisting ones.

But if you do make your own, the only catch is that thesemust inherit from the Exception base class.

Whooooaa, there, Beej. What are you even talking about?

Okay, you got me. I stepped into some Object-Oriented Programming terminology, there. Now, we’ll talk
about what that all means in a later chapter, but for now, take my word that you need to declare your new
exception, you have to use similar syntax to this:

class MyAwesomeException(Exception): # <-- Note "(Exception)"
pass

This is telling Python, “I’m making a new class called MyAwesomeException, but, here’s the thing,
MyAwesomeException is an Exception.”

Also, if you have a constructor, make sure you do this:

class MyAwesomeException(Exception): # <-- Note "(Exception)"

def __init__(self, *args): # <-- Get all positional args
print("In my constructor")
print("Doing whatever it is I have to do here")

# The following line makes sure the constructor for the underlying
# Exception object gets called with the arguments specified:

super().__init__(*args) # <-- Add this

Because MyAwesomeException is an Exception, suddenly we have two constructors: one for
Exception and one for MyAwesomeException.

The one in MyAwesomeException overrides the one in Exception. In order to make sure both are called,
we add that super() line in there.

Don’t worry about the details of how it works for now. We’ll cover that in detail in another chapter.

One final note: if you ever catch Exception: in your code, make sure that catch is after all the
more specific exceptions, like ValueException. Python will use the first one it finds that matches, and
Exception matches most everything.

But in the meantime, we can construct exceptions. But so what? What can we do with them?

14.14 Raising Exceptions
Problem-solving step: Understanding the Problem

Let’s say you’ve written some code and you want to use exceptions to notify the caller when some error
condition has occurred.

4https://docs.python.org/3/library/exceptions.html

https://docs.python.org/3/library/exceptions.html


Chapter 14. Exceptions 165

The process is going to be:

1. Construct a new exception of some kind.
2. Raise it with the raise statement.

Often these happen in the same line.

As an example, let’s write a function that reads a number between 0 and 9 from the keyboard. If the number
read is out of range, let’s raise a new ValueError with the message "out of range" as the argument.

def getnum():
n = input("Enter a number 0-9: ")

n = int(n) # Convert to int

if n < 0 or n > 9:
# If out of range, raise a ValueError:
raise ValueError("out of range")

return n

And then add some code to call it and catch any exceptions:

try:
n = getnum()
print(f'{n} * 15 == {n * 15}')

except ValueError as v:
print(f'Exception: {v}')

If we give it a run with a valid value:

Enter a number 0-9: 4
4 * 15 == 60

But if we specify something out of range, we get:

Enter a number 0-9: -1
Exception: out of range

What if we enter the letter a? That’ll bomb out on the call to int()… but it’ll do it with a ValueError,
like we saw earlier in the chapter.

And, hey! Coincidentally, we’re already catching ValueError in our code, above.

Let’s try it:

Enter a number 0-9: a
Exception: invalid literal for int() with base 10: 'a'

Caught it! Note that the error message is different than the “out of range” exception, so we can differen-
tiate.

So, hey! We now know how to:

• Catch exceptions
• Create new exceptions
• Raise exceptions

That’s not bad so far!



Chapter 14. Exceptions 166

14.15 Re-raising Exceptions
Sometimes you might be interested in seeing that an exception occurred, but don’t want to stop it. You
want it to continue to propagate so that the caller can also see it.

We can do this pretty simply with a lone raise inside the catch.

The following function notes a ValueError if it occurs, but then re-raises it so that it can get caught by
the try block in the main code:

def makeint(x):
try:

return int(x)

except ValueError:
print("Hey, I saw an exception!")
print("But I'll let someone else handle it.")

raise # Re-raise the exception

try:
x = makeint("beej")

except ValueError as v:
print(f'Exception: {v}')

This outputs:

Hey, I saw an exception!
But I'll let someone else handle it.
Exception: invalid literal for int() with base 10: 'beej'

14.16 Project Implementation
Go ahead and review the project specification from the beginning of the chapter if you have to.

Problem-solving step: Understanding the Problem

The big challenge here is how do we provide complete error checking of all user inputs to make sure
everything is sensible?

What are all the things that could go wrong?

Go ahead and make a list on your own, and then you can compare it to the list I have, below.

Spoilers ahead!

Here’s what I can think of happening:

• User doesn’t enter the correct number of command-line arguments.
• User enters a non-number for the second command-line argument.
• User enters a filename that doesn’t exist.
• User enters a non-positive number.
• The file isn’t a regular file (e.g. it’s a directory or other special file).
• The user doesn’t have permission to read the file.
• User enters a number that’s larger than the number of lines in the file.

Some of these you can handle with simple if statements. Others we’ll have to catch with exceptions.

That last one, about what happens when you enter a number larger than the number of lines in the file, is
a great question. The spec doesn’t say. So we should ask the creator of the spec for clarification.



Chapter 14. Exceptions 167

“Hey, Beej! The spec doesn’t say what to do if the number of lines specified is greater than the number of
lines in the file. What do we do in that case?”

Let’s do this: we’ll stop outputting lines at either the number of lines the user specifies or the end of the
file, whichever comes first. No message to the user is required in either case.

Ok, let’s plan!

Problem-solving step: Devising a Plan

Looking at the spec, the program can be broken down into a number of parts.

• Read user input
• Open the file for reading
• Read the number of lines up to what the user-specified (or EOF)

For each of those parts, we’ll have to do input validation and tell the user if anything went wrong.

Problem-solving step: Carrying Out the Plan

Some of this stuff we’ve seen before, so we’ll skim over it a bit.

First, let’s get the user input from the command line, check that the right number of arguments was passed,
and check the input to make sure it’s sensible.

1 import sys
2

3 if len(sys.argv) != 3:
4 print("usage: head.py filename count")
5 sys.exit(1)
6

7 filename = sys.argv[1]
8 total_count = int(sys.argv[2])
9

10 if total_count < 1:
11 print("head.py: count must be a positive integer")
12 sys.exit(2)

That’s partway there, but we’re missing an error case. Do you see it?

What if the user enters “bananas” for the count? If we try to run it to see what happens, sure enough, we
get an exception.

Traceback (most recent call last):
File "foo.py", line 8, in <module>

total_count = int(sys.argv[2])
ValueError: invalid literal for int() with base 10: 'bananas'

It’s the ValueError exception that we’ve seen before. Let’s modify our code to catch that exception and
handle it.

1 import sys
2

3 if len(sys.argv) != 3:
4 print("usage: head.py filename count")
5 sys.exit(1)
6

7 filename = sys.argv[1]
8

9 try:
10 total_count = int(sys.argv[2])
11 except ValueError:



Chapter 14. Exceptions 168

12 print("head.py: count must be a positive integer")
13 sys.exit(2)
14

15 if total_count < 1:
16 print("head.py: count must be a positive integer")
17 sys.exit(2)

There! That fixes it. And that code works, but…

Notice anything messy about it? That’s right—we sure are repeating ourselves a lot. Let’s refactor and
see if we can get rid of those duplicate lines.

One option would be to set a flag in either case to True if there was an error, and then print the message
and exit. That would work, and wouldn’t be a bad solution at all.

But we can be a bit more clever and actually make the exception handler do all the work for us by simply
raising a ValueError exception if the total_count is less than one. Then we’ll get a ValueError in
both cases, and we can handle it in one place.

9 try:
10 total_count = int(sys.argv[2])
11

12 if total_count < 1:
13 raise ValueError()
14

15 except ValueError:
16 print("head.py: count must be a positive integer")
17 sys.exit(2)

Check that out. If int() raises the exception, we catch it. And if we raise the exception ourselves, we
also catch it. Plus all the logic for testing the input value for correctness is all in the same try block,
nicely.

OK! We have the code getting the correct input. Let’s go on to the next step and print lines from the file.

We can start by simplifying the problem to just print all the lines and not worrying about the count for
now.

Let’s take our code from before for printing out a file:

19 with open(filename) as f:
20 for line in f:
21 print(line, end="")

If we run the program, passing in an existing file, we see all the lines of that file printed out.

But what if we pass in the name of a non-existent file?

Let’s try it!

$ python head.py nosuchfile.txt 5
Traceback (most recent call last):

File "foo.py", line 19, in <module>
with open(filename) as f:

FileNotFoundError: [Errno 2] No such file or directory: 'nosuchfile.txt'

Bammo! Another exception! This time it’s FileNotFoundError.

Let’s try it on a directory:



Chapter 14. Exceptions 169

$ python head.py / 5
Traceback (most recent call last):

File "foo.py", line 19, in <module>
with open(filename) as f:

IsADirectoryError: [Errno 21] Is a directory: '/'

An IsADirectoryError exception!

Let’s try it on a file we don’t have permission to read:

$ python head.py noperm.txt 5
Traceback (most recent call last):

File "foo.py", line 19, in <module>
with open(filename) as f:

PermissionError: [Errno 13] Permission denied: 'noperm.txt'

Yet another exception: PermissionError.

One option we have here is to specifically catch all these exceptions:

19 try:
20 with open(filename) as f:
21 for line in f:
22 print(line, end="")
23

24 except (FileNotFoundError, IsADirectoryError, PermissionError):
25 print(f'head.py: error reading file {filename}')

And that works.

But I have a bit of insider knowledge that we can use. All of those exceptions are derived from IOError.
We can see that in the list of built-in exceptions5.

You can see, there are a lot of exceptions that are IOErrors. Instead of catching them individually, an
option is to just catch IOError and print out an appropriate error message. This has the benefit of catching
all those errors that file() might raise. It also has the drawback of not being able to easily differentiate
between them. So how can we print an appropriate error for each one?

Luckily, IOError has a handy attribute in it called strerror that gives a nice human-readable error
message that describes what went wrong. We could print that.

So let’s just catch the IOError exception and print its error message out.

19 try:
20 with open(filename) as f:
21 for line in f:
22 print(line, end="")
23

24 except IOError as e:
25 print(f'head.py: {filename} {e.strerror}')

And when we run it, we get some nice error message for whatever error case we get:

$ python head.py noperm.txt 5
head.py: noperm.txt Permission denied

$ python head.py / 5
head.py: / Is a directory

5https://docs.python.org/3/library/exceptions.html

https://docs.python.org/3/library/exceptions.html


Chapter 14. Exceptions 170

$ python head.py nofile.txt 5
head.py: nofile.txt No such file or directory

Pretty neat!

What’s left? Oh yeah—we have to actually implement the functionality to only show the first however-
many lines of the file.

There are a couple of approaches to this.

One, we could use a while loop and test for the end of the file or reaching the required count, whichever
comes first.

That would be fine. But a more straightforward option might be to just jump out of the loop when the
counter gets high enough. The break statement can be used to bail out of a loop partway through.

19 line_count = 0 # Number of lines we've read so far
20

21 try:
22 with open(filename) as f:
23 for line in f:
24

25 line_count += 1
26

27 if line_count > total_count:
28 break
29

30 print(line, end="")
31

32 except IOError as e:
33 print(f'head.py: {filename} {e.strerror}')

As you see, we’re keeping track of the number of lines read so far, and if that exceeds our magic target
number, we just break straight out of the loop and we’re done.

And it works!

$ python head.py rocks.txt 3
marble
coal
granite

Super-robust against bad input and errors. This is what we call defensive coding, when you prepare for
the worst and handle those cases without crashing. It’s a good strategy because not only does it make your
program more capable of handling errors, but it also makes you stop and consider what the errors are that
might occur in the first place. And, as we’ve said, hours of debugging can save you minutes of planning.

(Solution6.)

14.17 Exercises
1. When we run this code, it prints out “Exception” instead of “Division by Zero”. Why? What can

we do, without deleting any code, to get it to print “Division by zero”?

try:
x = 3490 / 0

except Exception:

6https://beej.us/guide/bgpython/source/examples/head.py

https://beej.us/guide/bgpython/source/examples/head.py


Chapter 14. Exceptions 171

print("Exception")
except ZeroDivisionError:

print("Division by Zero")

(Solution7.)

2. Write a function that takes a list of numbers, and two integers as index values. The function should
return the sum of the two numbers in the list at the two given indexes.

Catch the specific exception that is raised if the list indexes are out of range. Print an appropriate
error.

Hint: to see which exception is raised if the list indexes are out of range, run the code without a
try-except block and see what it prints when it bombs. Then add a try-except for that exception.

(Solution8.)

3. Write a function that accepts a list of three numbers and returns the sum. If the list does not contain
three numbers, raise a InvalidListSize exception. (Note that this exception doesn’t exist—you’ll
have to write it.)

Also write an exception handler that catches the exception if it is thrown.

(Solution9.)

14.18 Summary
A new big concept in this chapter with exceptions. It’s a technique we haven’t used it before to catch
errors, but is a powerful one to add to your skillset.

We compared and contrasted error handling via return values with error handling with exceptions, writing
programs that could catch exceptions and handle them, and also wrote programs that generate our own,
new exceptions.

Additionally, we learned how flow control works around exception handling, with the else and finally
clauses.

Any time you learn a new basic way of doing something, it’s difficult to wrap your head around at first.
But enough practice with it, and I guarantee after a while it will become second nature.

7https://beej.us/guide/bgpython/source/examples/ex_catchorder.py
8https://beej.us/guide/bgpython/source/examples/ex_listadd2.py
9https://beej.us/guide/bgpython/source/examples/ex_listadd.py

https://beej.us/guide/bgpython/source/examples/ex_catchorder.py
https://beej.us/guide/bgpython/source/examples/ex_listadd2.py
https://beej.us/guide/bgpython/source/examples/ex_listadd.py


Chapter 15

Appendix A: Basic Math for
Programmers

I know what you’re thinking: screw this.

Or maybe your language is even more blue.

But bear with me for just a moment. Knowing a few basic mathematical operations can really help you
be a better developer, as well as help you understand code that you come across.

This section isn’t so much about application of these functions, but is more about their definition. It’ll be
up to you to use them as you see fit.

It’s a short one—just plow through it.

Fun Math Fact: Math is cool.

15.1 Arithmetic
Addition, subtraction, multiplication, and—don’t fall asleep on me already—division. The Big Four of
grade school math.

And, as a quick terminology summary:

• The addition of two numbers produces a sum.
• The subtraction of two numbers produces a difference.
• The multiplication of two numbers produces a product.
• The division of two numbers produces a quotient (and potentially a remainder.)

I’m not going to talk about what the operators do, and will presume you remember that from however-
many years ago.

But I do want to talk about which comes first, because you might have forgotten.

What do I mean by that?

Take this expression: 1 + 2 × 3
If we first add 1 + 2, we get 3. And then we multiply it by 3 and we get the answer of 9.
But wait! If we first multiply 2 × 3 and get 6, then we add 1 we get an answer of 7!
So… which is it? 9 or 7?
What we need to know is the order of operations or the precedence of one operator over another. Which
happens first, + or ×?
For arithmetic, here is the rule: do all the multiplications and divisions before any additions and subtrac-
tions.

172



Chapter 15. Appendix A: Basic Math for Programmers 173

So: 1 + 2 × 3 = 7
We’ll revisit order of operations as we continue on.

In Python, we can just use the operators +, -, *, and / for addition, subtraction, multiplication, and division,
respectively.

15.2 Division in Python
Hey—didn’t we just talk about this?

Yes, kinda. There are a few details that are of interest.

Let’s divide!

print(3 / 2) # 1.5, as expected

What we’ve done there is a floating point division. That is, it produces a floating point result with a
decimal point. Indeed, even this does the same:

print(2 / 1) # 2.0

So that’s the “normal” way of division, right? No big surprises there.

But what if I told you there is no spoon1?

Okay, that’s a bit much. Never mind that analogy.

But there is another kind of division, one that produces an integer result only. Integer division uses the //
operator (two slashes instead of just one). It returns an integer result in all cases, even if normally there
would be a fraction.

It does this by simply dropping the part after the decimal point like a hot potato.

print(9 / 5) # 1.8
print(9 // 5) # 1

When you want an integer quotient, this is the fast way to do it.

15.3 Modulo, AKA Remainder
Sowhen you do an integer division, it just cuts off the fractional part after the decimal point. What happens
to it? Where does it go? If a tree falls in the forest and no one is around to hear it…?

Well, it’s gone forever, but there’s a way to see what it would have been in the form of a remainder.

The remainder tells us how much is “left over” after the integer division has taken place.

In the following examples, we’ll use÷ to represent integer division.

For example, if we take 40 and divide it into 4 parts, 40 ÷ 4, we get a result of 10, exactly. Because it’s
exact, there are no leftovers. So the remainder is zero.

But if we take 42 and divide it into 4 parts… well, 42 ÷ 4 = 10 still. But it’s not exact. If we do the
inverse and multiply 10 × 4, we only get 40, not 42. There are 2 left over. The remainder is 2!
We do this with the modulo operator, or mod for short.

42 ÷ 4 = 10
42 mod 4 = 2 The remainder!
And in Python, the % operator is the modulo operator.

1https://www.youtube.com/watch?v=XO0pcWxcROI

https://www.youtube.com/watch?v=XO0pcWxcROI


Chapter 15. Appendix A: Basic Math for Programmers 174

print(42 // 4) # 10
print(42 % 4) # 2

Mod has the neat property of rolling numbers over “odometer style” because the result of the mod can
never be larger than the divisor.

As an example:

for i in range(10):
print(i % 4) # i modulo 4

outputs:

0
1
2
3
0
1
2
3
0
1

15.4 Negative numbers
I’m not going to talk much about these here, but negative numbers are numbers less than 0, and they’re
indicated by a minus sign in front of the number. −7 means “7 less than zero”.
And I know that’s a crazy concept. Like how can you have −12 apples on the table? It doesn’t seem
particularly rooted in reality.

But a closer to home example might be me saying, “I owe you $-35!” which means, in effect, you owe
me $35!

Remember some simple rules:

If you multiply a negative number by a negative number, the result is positive.

−3 ×−7 = 21
If you multiply a negative number by a positive number, the result is negative.

−3 × 7 = −21
If you add a negative number to a positive number, it’s just like subtracting the negative number from the
positive number:

−7 + 100 = 93
or, equivalently:

100 + (−7) = 100 − 7 = 93

15.5 Absolute Value
Think of this as how far from zero on the number line any number is.

10 is 10 away from zero. The absolute value of 10 is 10.

2.8 is 2.8 away from zero. The absolute value of 2.8 is 2.8.

Well, that seems a bit bland. Why bother?



Chapter 15. Appendix A: Basic Math for Programmers 175

Here’s why:

-17 is 17 away from zero. The absolute value of -17 is 17.

The rules are:

• The absolute value of a positive number is itself.
• The absolute value of a negative number is its negation, the positive version of itself.

In summary, if it’s negative, the absolute value makes it positive.

In mathematical notation, we represent the absolute value with vertical bars:

𝑥 = −17 If 𝑥 is −17…
|𝑥| = 17…the absolute value of 𝑥 is 17.
|12| = 12 The absolute value of 12 is 12.
| − 13.8| = 13.8 The absolute value of −13.8 is 13.8.
In Python we compute absolute value with the abs() built-in function:

print(abs(-17)) # 17
print(abs(28.2)) # 28.2

In terms of precedence, you can think of absolute value kind of like parentheses. Do the stuff inside the
absolute value first, then take the absolute value of the result.

15.6 The Power of Exponents
Let’s say you wanted to multiply the number 7 by itself, say, 8 times. We could write this:

7 × 7 × 7 × 7 × 7 × 7 × 7 × 7
I guess that’s not entirely awful.

So let’s go all out. I want to multiply 7 by itself 3490 times. I’m going to head to the pub while you work
on that. Let me know when you’re done.

Luckily for you, mathematicians are lazy. They hate writing more than they have to, so they invent new
notations out of thin air to avoid the extra work. Just like how I keep packing the kitchen trash down so I
don’t have to run it outside.

Actually, no, it’s not really like that at all2.

So what they invented is another way of saying “3490 7s multiplied by each other” that didn’t involve an
endless line of 7s and ×s. And it looks like this:
73490 (read “7 to the 3490th power”)
That means 3490 7s multiplied together. We call this raising to a power or exponentiation.

Or, put another way:

78 = 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7
We have all kinds of fun facts! Ready?

In the example 78, the number 7 is what we call the base and the number 8 we call the exponent.
If you want to write that code in Python, you’d write:

print(7**8) # prints 5764801

The exponent must be non-negative, so zero or larger.
2Apart from the lazy factor, that is.



Chapter 15. Appendix A: Basic Math for Programmers 176

But wait—zero? How do you multiply a number by itself zero times? It’s a valid question, and one that
has baffled philosophers for time immemorial. But not mathematicians! Like power-crazed numerical
dictators, they cried, “We made this up, and we declare that anything to the zeroth power is 1. End of
story!”

So there we have it. 𝑛0 = 1 for all 𝑛.
But their unquenchable thirst for power didn’t end there. Mathematicians also decided that there was such
a thing as negative exponents.

If you have a negative exponent, you need to invert the fraction before applying the exponent. The fol-
lowing is true:

4−3 = (1
4)

3

(3
4)

−8
= (4

3)
8

And in case you’re wondering how to raise a fraction to an exponent, you just apply the exponent to the
numerator and denominator:

(4
3)

8
= 48

38 = 65536
6561

We also have some shorthand names for certain exponents.

𝑛2 we say “𝑛 squared”. Anything raised to the power of 2 is that number squared.
𝑛3 we say “𝑛 cubed”. Anything raised to the third power is that number cubed.

In casual writing, you’ll often see the caret character ^ used to indicate an exponent. So if someone writes
14^4, that’s the same as 144.
Lastly, precedence. We know that multiplication and division happen before addition and subtraction, but
what about exponentiation?

Here’s the rule: exponentiation happens before arithmetic.

With 2 + 34, we first compute 34 = 81, then add 2 for a total of 83.

15.7 Parentheses
So what if you want to change the order of operations, like some kind of mathematical rebel?

What if you have 1 + 23 and you want 1 + 2 to happen before the exponentiation?
You can use parentheses to indicate that operation should occur first, like this:

(1 + 2)3

With that, we first compute 1 + 2 = 3, and then we raise that to the 3rd power for a result of 27.
You could also do this:

2(3+4)

Remember: parentheses first! 3 + 4 = 7, so we want to compute 27 which is 128. (Good software
developers have all the powers of 2 memorized up through 216. Well, crazy ones do, anyway.)

Python uses parentheses, as well. The above expression could be written in Python like this:

2**(3+4)

Easy peasy.



Chapter 15. Appendix A: Basic Math for Programmers 177

One final note: if an exponent is a long expression without parentheses, it turns out the parentheses are
implied. The following equation is true:

2(3+4) = 23+4

15.8 Square root
Square root is a funny one. It’s the opposite of squaring, which if you remember from the earlier section
means raising to a power of 2. But, again, square root is the opposite of that.

It’s asking the question, “For a given number, which number do I have to multiply by itself to get that
number?”

Let’s examplify!

But before we do, the weird lightning bolt line thing is the mathematical symbol for the square root of a
number.

Let’s ask for the square root of 9:
√
9 = ?

That’s asking, what number multiplied by itself makes 9? Or, in other words, what number raised to the
2nd power makes 9? Or, in other words, what number squared makes 9?
Hopefully by now you’ve determined that:

3 × 3 = 9
and, equivalently:

32 = 9
so therefore:
√
9 = 3

What about some other ones?
√
16 = ?

√
25 = ?

√
36 = ?

√
12180100 = ?

Note that all of those have integer answers. If the square root of number is an integer, we call that number
a perfect square. 16, 25, 36… these are all perfect squares.

But you can take the square root of any number.
√
17 = 4.123105625617661 approximately.

17 is not a perfect square, since it doesn’t have an integer result.

Now, you might be imagining what would happen if you tried to take the square root of a negative number:
√
−100 = ?

After a bit of thought, you might realize that no number multiplied by itself can ever result in−100 so…
what can you do?

You might think, “We’re doomed,” but not mathematicians! They simply defined:
√
−1 = 𝑖

and invented an entire mathematical system around what they called imaginary numbers3 that actually
have some amazing applications. But that’s something you can look up on your own.

In addition to square roots, there are also cube roots. This is asking, “What number cubed results in this
number?” This is indicated by a small 3 above the root symbol:
3√27 = 𝑥
which is the inverse of the equation:

3https://en.wikipedia.org/wiki/Imaginary_number

https://en.wikipedia.org/wiki/Imaginary_number


Chapter 15. Appendix A: Basic Math for Programmers 178

𝑥3 = 27
Can you figure out what 𝑥 is?

What about how to do this in Python?

For square roots, the preferred way is to use the sqrt() function in the math module that you import:

import math

print(math.sqrt(12180100)) # prints 3490.0

What about cube roots? Well, for that, we’re going to jump back to exponents and learn a little secret.
You can raise numbers to fractional powers. Now, there are a lot of rules around this, but the short of it is
that these equations are true:
√𝑥 = 𝑥 1

2 3√𝑥 = 𝑥 1
3 4√𝑥 = 𝑥 1

4

and so on. Raising a number to the 1
3 power is the same as taking the cube root!

Like if we wanted to compute the cube root of 4913, we could compute:
3√4913 = 4913 1

3 = 17
And you can do that in Python with the regular exponent operator **:

print(4913**(1/3)) # prints 16.999999999999996

Hey—wait a second, that’s not 17! What gives?

Well, turns out that floating point numbers in computers aren’t exact. They’re close, but not exact. It’s
something developers need to be aware of and either live with or work around.

Lastly, because square root, cube root, and all the other roots are just exponents in disguise, they have the
same precedence as exponents: they happen before arithmetic.

15.9 Factorial
Factorial is a fun function.

Basically if I ask for something like “5 factorial”, that means that I want to know the answer when we
multiply 5 by all integers less than 5, down to 1.

So I’d want to know:

5 × 4 × 3 × 2 × 1
the answer to which is 120.
But writing “factorial” is kind of clunky, so we have special notation for it: the exclamation point: !. “5
factorial” is written 5!.
Another example:

6! = 6 × 5 × 4 × 3 × 2 × 1 = 720
As you can imagine, factorial grows very quickly.

40! = 815915283247897734345611269596115894272000000000
In Python, you can compute factorial by using the factorial() function in the math module.

import math

print(math.factorial(10)) # prints 3628800



Chapter 15. Appendix A: Basic Math for Programmers 179

Factorial, being multiplication in disguise, has the same precedence as multiplication. You do it before
addition and subtraction.

15.10 Scientific notation
For really large floating point numbers, you might see things like this appear:

print(2.7**100) # 1.3689147905858927e+43

What’s that e+43 at the end?

This is what we call scientific notation. It’s a shorthand way of writing really large (or small) numbers.

The number above, 1.3689147905858927e+43, is saying this, mathematically:

1.3689147905858927 × 1043

Now, 1043 is a big number. So multiplying 1.3689 etc. by it results in a very large number, indeed.
But that’s not all. We can use it to represent very small numbers, too.

print(3.6/5000000000000000000) # 7.2e-19

7.2e-19 means:

7.2 × 10−19

And 10−19 is a very small number (very close to 0—remember that 10−19 = 1
1019 ), so multiplying 7.2

by it results in a very small number as well.

Remember this:

• If you see e-something at the end, it’s a very small number (close to 0).
• If you see e+something at the end, it’s a very large number (far from 0).

15.11 Logarithms
Hang on, because things are about to get weird.

Well, not too weird, but pretty weird.

Logarithms, or logs for short, are kind of the opposite of exponents.

But not opposite in the same way square roots are opposite.

That’s convenient, right?

With logs, we say “log base x of y”. For example, “log base 2 of 32”, which is written like this:

log2 32
What that is asking is “2 to the what power is 32?” Or, in math:

These are both true:

𝑥 = log2 32
2𝑥 = 32
So what’s the answer? Some trial and error might lead you to realize that 25 = 32, so therefore:
𝑥 = log2 32 = 5
There are three common bases that you see for logs, though the base can be any number: 2, 10, and 𝑒.
Base 2 is super common in programming. In fact, it’s so common that if you ever see someone write log𝑛
in a computing context, you should assume they mean log2 𝑛.



Chapter 15. Appendix A: Basic Math for Programmers 180

𝑒 is the base of the natural logarithm4, common in math, and uncommon in computing.

So what are they good for?

A common place you see logarithms in programming is when using Big-O notation to indicate computa-
tional complexity5.

To compute the log of a number in Python, use the log() function in the math module. You specify the
base as the second argument. (If unspecified, it computes the natural log, base 𝑒.)
For example, to compute log2 999:

import math

print(math.log(999, 2)) # Prints 9.96434086779242

# Because 2^9.96434086779242 == 999. Ish.

The big thing to remember there is that as a number gets large, the log of the number remains small. Here
are some examples:

x log2x

1 0.0000
10 3.3219
100 6.6439
1000 9.9658
10000 13.2877
100000 16.6096
1000000 19.9316
10000000 23.2535

The log-base-2 of a big number tends to be a much smaller number.

15.12 Rounding
When we round a number, we are looking for the nearest number of a certain number of decimal places,
dropping all the decimal places smaller than that.

By default, we mean zero decimal places, i.e. we want to round to the nearest whole number.

So if I said, “Round 2.3 to the nearest whole number,” you’d answer “2”, because that’s the closest whole
number to 2.3.

And if I said, “Round 2.8 to the nearest whole number,” you’d answer “3”, because that’s the closest whole
number to 2.8.

When we round to a higher number, we call that rounding up.

The other direction is rounding down.

But what if I said “Round 2.5 to the nearest whole number?” It’s perfectly between 2 and 3! In those
cases, conventionally, lots of us learned to round up. So the answer would be 3.

We can also force a number to round a certain direction by declaring which way to round.

“Divide x by 3, then round up.”

In Python, we have a few options for rounding.

We can use the built-in round() function.

4https://en.wikipedia.org/wiki/Natural_logarithm
5https://en.wikipedia.org/wiki/Big_O_notation

https://en.wikipedia.org/wiki/Natural_logarithm
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation


Chapter 15. Appendix A: Basic Math for Programmers 181

But it behaves a little bit differently than we might be used to. Notably, numbers like 1.5, 2.5, and 3.5
that are equally close to two whole numbers always round to the nearest even number. This is commonly
known as round half to even or banker’s rounding.

round(2.8) # 3
round(-2.2) # -2
round(-2.8) # -3

round(1.5) # 2
round(2.5) # 2
round(3.5) # 4

You can also tell round() how many decimal places you want to round to:

round(3.1415926, 4) # 3.1416

Note that Python has additional weird rounding behavior6 due to the limited precision of floating point
numbers.

For always rounding up or down, use the functions ceil() and floor() from the math module.

ceil() returns the next integer greater than this number, and floor() returns the previous integer smaller
than this number.

This makes perfect sense for positive numbers:

import math

math.ceil(2.1) # 3
math.ceil(2.9) # 3
math.ceil(3.0) # 3
math.ceil(3.1) # 4

math.floor(2.1) # 2
math.floor(2.9) # 2
math.floor(3.0) # 3
math.floor(3.1) # 3

But with negative numbers, it behaves differently than you might expect:

import math

round(2.3) # 2
math.floor(2.3) # 2

round(-2.3) # -2
math.floor(-2.3) # -3 (!!)

round(2.8) # 3
math.ceil(2.8) # 3

round(-2.8) # -3
math.ceil(-2.8) # -2 (!!)

While round() heads to the nearest integer, floor() goes to the next smallest integer. With negative
numbers, that’s the next one farther away from zero. And the reverse is true for ceil().

6https://docs.python.org/3/tutorial/floatingpoint.html#tut-fp-issues

https://docs.python.org/3/tutorial/floatingpoint.html#tut-fp-issues


Chapter 15. Appendix A: Basic Math for Programmers 182

If you want a round up function that works on positive and negative numbers, you could write a helper
function like this:

import math

def round_up(x):
return math.ceil(x) if x >=0 else math.floor(x)

round_up(2.0) # 2
round_up(2.1) # 3
round_up(2.8) # 3

round_up(-2.0) # -2
round_up(-2.1) # -3
round_up(-2.8) # -3

I’ll leave round_down() as an exercise. :)

If you want to always round up to the next whole number instead of doing banker’s rounding, you can use
this trick: add 0.5 to the number and then convert it to an int(). (If the number is negative, subtract 0.5
from it.)

int(0.5 + 0.5) # 1
int(1.5 + 0.5) # 2
int(2.5 + 0.5) # 3

int(2.8 + 0.5) # 3
int(2.2 + 0.5) # 2

int(-2.2 - 0.5) # -2
int(-2.8 - 0.5) # -3

15.13 Large Numbers
Python is really good with large integer numbers. In fact, it has what we call arbitrary precision integer
math. That means we can hold numbers as big as memory can handle, which is large.

So if you ask Python to compute 100000!, it will do it. The result, incidentally, is 465,575 digits long. No
problem.

But the same is not true for floating point numbers (numbers with a decimal point). Python generally uses
64 bits to represent floating point numbers, which means there’s a limit to the amount of precision—you
can only have 16 digits in your number, though you can raise that number to huge positive or negative
powers to get very large or very small numbers.

Floating point is brilliant because it can represent really huge and really small numbers, but the number
of digits you have at your disposal is limited.



Chapter 16

Appendix B: The REPL

16.1 What is the REPL?
The REPL, pronounced REP-əl, is short for the Read-Evaluate-Print Loop.

Great. I mean, truly, that’s awesome.

But what does any of that mean?!

Check this out. If you run python on the command line (or whatever your OS’s variant is), you’ll end up
with a prompt that looks like this:

$ python
Python 3.8.0 (default, Oct 23 2019, 18:51:26)
[GCC 9.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

And it just sits there, waiting for you to type something.

Actually, it’s reading. The Read part of REPL.

So type something and hit RETURN!

>>> print("Hello, world!")
Hello, world!

What happened after you hit RETURN was that Python Evaluated your expression, and the Printed the
result. And then it printed another >>> prompt, because it’s doing this in a Loop! The REPL!

This is a method you could use to quickly test out Python commands to see how they work. It’s not
commonly used for development, but it is there if you find it convenient.

Any time you see the >>> prompt, it’s waiting for another Python command.

>>> a = 20
>>> b = 30
>>> c = a + b
>>> print(c)
50

What about multi-line commands? Let’s try printing numbers in a loop:

>>> for i in range(5):
...

183



Chapter 16. Appendix B: The REPL 184

Wait! What’s that ... prompt? That means Python is waiting for more. The fact that the previous line
ended in a : indicates that a block is to follow it. So Python is waiting for a properly-indented block. (Hit
RETURN on a blank line to exit the block. If you get stuck in ...mode, just keep hitting RETURN until you
get back out to the >>> prompt.)

>>> for i in range(5):
... print(i)
...
0
1
2
3
4

16.2 Calculator
You can use the Python REPL as a quick and dirty calculator.

>>> 50 + 20 * 10
250
>>> import math
>>> math.factorial(10)
3628800
>>> math.sqrt(2)
1.4142135623730951

16.3 Getting Help
Python has a powerful built-in help system.

You can ask for help on any expression; help will be returned on the type of that expression.

For example, if we ask for help on a variable of type string, we get help on what we can do with that
variable:

>>> s = "Hello!"
>>> help(s)

This will output all kinds of stuff.

Help on class str in module builtins:

class str(object)
| str(object='') -> str
| str(bytes_or_buffer[, encoding[, errors]]) -> str
|
| Create a new string object from the given object. If encoding or
| errors is specified, then the object must expose a data buffer
| that will be decoded using the given encoding and error handler.

Et cetera. The : prompt at the bottom is the prompt for the pager. You can hit RETURN to go to the next
line, or SPACE to go to the next page. Up and Down arrow keys also work. Type q to get out of the pager
and return to normal.

The first thing you might notice are a bunch of functions that have double underscores around them, like
this:



Chapter 16. Appendix B: The REPL 185

| __add__(self, value, /)
| Return self+value.

Those double underscores, AKA dunderscores or just dunders, indicate that this is an internal or special
functions. As a beginner, you can ignore them. As you get more advanced, you might want to see how to
make use of them.

So hit SPACE a bunch of times until you’re past the dunders. After that, you start getting to the documen-
tation for the more common functions, like this one:

| count(...)
| S.count(sub[, start[, end]]) -> int
|
| Return the number of non-overlapping occurrences of substring sub in
| string S[start:end]. Optional arguments start and end are
| interpreted as in slice notation.

We see there’s a description there of what the method does, as well as an important description of what
each parameter to the function means. But let’s look at this line in particular:

| S.count(sub[, start[, end]]) -> int

That’s not Python. It’s documentation, and it has its own way of being read.

Generally:

The S. refers to this string that we’re operating on. For example, if I say:

"fee fie foe foo".count("fo")

the string "fee fie foe foo" is represented by S in the documentation.

The stuff after the -> indicates the type of the return value. This function returns an integer.

Now, what about that start and end stuff in the middle with the square brackets?

In documentation, square brackets indicate optional parameters to the function. Notice in my example,
above, I didn’t pass start or end… they’re in square brackets, so they’re optional.

Looking in more detail, you see the brackets are nested. This means you can make the call with a sub and
a start… and then the end becomes optional. There’s no way to call it with just a sub and an end, but
no start. The optional end is optional if-and-only-if the optional start had already been specified.

Finally, you can ask for help on a specific function or method:

help("".count) # Get help specifically on string.count method

16.4 dir()—Quick and Dirty Help

The dir() built-in function is like help(), except extraordinarily terse. It just returns a list of the methods
on a particular thing.

For instance, we can get that list of methods and data attached to a dictionary by asking for dir({}) (or
by passing any dict to dir()).

>>> dir({})
['__class__', '__contains__', '__delattr__', '__delitem__', '__dir__',
'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__',
'__getitem__', '__gt__', '__hash__', '__init__', '__init_subclass__',



Chapter 16. Appendix B: The REPL 186

'__iter__', '__le__', '__len__', '__lt__', '__ne__', '__new__',
'__reduce__', '__reduce_ex__', '__repr__', '__reversed__',
'__setattr__', '__setitem__', '__sizeof__', '__str__',
'__subclasshook__', 'clear', 'copy', 'fromkeys', 'get', 'items', 'keys',
'pop', 'popitem', 'setdefault', 'update', 'values']

Not as good as help(), but it might get you the quick answer if you’re like, “What do I call to get the
values out of a dictionary, again? Oh, that’s right. values()! Eureka!”

One place this is also useful is if you’re using a poorly-documented piece of software1. Asking for dir()
on an object can give you insight on how to use it.

Though if you do this, beware that programmers change their undocumented interfaces all the timewithout
telling people. There’s a school of thought that says if something’s undocumented, you shouldn’t use it at
all, lest it be silently changed or dropped some day in the distant future. And that school has a point.

16.5 Getting out of the REPL
Oh, sure, Beej, put this section at the end of the chapter. Well, I just wanted to make sure you read the
middle bit. :)

Since the REPL is reading from the keyboard as a “file”, you should send an EOF (End Of File2) character
to indicate that it should be done.

On Mac and Linux and BSD and Ultrix and MINIX and SunOS and IRIX and HP-UX and Solaris and
GNU Hurd and Plan 9 From Bell Labs and any Unix variant, EOF is indicated from the keyboard with
CTRL-d.

On Windows and Windows and Windows and Windows and any Windows variant and MS-DOS, EOF is
indicated from the keyboard with CTRL-z. Followed by RETURN.

Additionally, on any system, you can type exit() at the >>> prompt and it’ll quit out.

1Which should serve as a not-so-gentle reminder that you should document your code.
2https://en.wikipedia.org/wiki/End-of-file

https://en.wikipedia.org/wiki/End-of-file


Chapter 17

Appendix C: Assignment Behavior

In this book, we’ve talked about how Python variables work, but let’s dig into it a little more here.

When we have data of some kind, like a number or a list or a string, that’s stored in memory. And we can
assign it to a variable name so that we can have a way to refer to it.

That variable name is a reference to the data.

So if everything’s a reference, that must mean that if we do this, there’s only one string, right? Just two
names for the same string?

s = "Beej!"
t = s

Yes! That’s exactly what that means. s and t both refer to the same string in memory. That means if you
changed the string, both s and t would show the changes because they’re both two names for the same
string.

But you can’t change the string! It’s immutable!

It’s the same with numbers:

x = -3490
y = x

Both x and y refer to the same number in memory. If you changed the number, both x and y would show
the change.

But you can’t change the number! It’s immutable!

Let’s try a list:

c = [1, 2, 3]
d = c

Just like with strings and numbers, both variables c and d refer to the same thing in memory. But the
difference is that the list is mutable! We can change it, and we’d see the change in c and d.

c = [1, 2, 3]
d = c

c[1] = 99
print(d[1]) # 99

Of course, you can reassign a variable to point at anything else at any time.

187



Chapter 17. Appendix C: Assignment Behavior 188

17.1 How This Relates To Functions
All this adds up to Python’s call-by-sharing evaluation strategy.

When you call a function, all the arguments passed to the function are assigned into the parameters in the
parameter list.

That assignment, even though it doesn’t use the = assignment operator, behaves in the same way, nonethe-
less.

In the following example, both x and a refer to the same object… right up to the moment we reassign x
on line 4. At that point, x refers to a different list, but a still refers to the original.

1 def foo(x):
2 x[1] = 99 # x still refers to the same list as a
3

4 x = [4, 5, 6] # x refers to a different list than a, now
5

6 a = [1, 2, 3]
7 foo(a)

17.2 Is Any of This True?
Yes, believe it!

We can verify it in the REPL with the built-in id() function and the is operator.

The id() function will give us the location in memory where a thing (like a string or number) that a
variable refers to is stored. If two variables return the same ID, they must be pointing to the same thing
in memory.

Let’s try in the REPL:

>>> s = "Beej!"
>>> t = s
>>> id(s)
140156808252976
>>> id(t)
140156808252976

The exact number doesn’t matter (it will vary), but what matters is that they’re identical. Both s and t
refer to the entity in memory at that location, namely the string "Beej!".

You could compare those numbers to determine if both variables point to the same thing:

>>> id(s) == id(t)
True

but there’s a shorthand for that with the is operator:

>>> s is t
True

Note that it’s typically only want you assign from one variable to another that they refer to the same thing.
If you assign to them independently, they typically won’t:

>>> s = "Beej!"
>>> t = "Beej!"
>>> s is t



Chapter 17. Appendix C: Assignment Behavior 189

False

In the above example, there are two strings in memory with value "Beej!".

I recognize that I said “typically” a bunch up there, and that should rightfully raise a bunch of “Beej is
hand-waving” red flags.

The actual details get a bit more gritty, but if you want to stop with what we’ve said up there, you’re good.

“No, keep going down the rabbit hole!”

Okay then!

17.3 Python Compiler Optimizations
If you take this example from the REPL, above:

>>> s = "Beej!"
>>> t = "Beej!"
>>> s is t
False

and you put it in a python program, like test.py:

s = "Beej!"
t = "Beej!"
print(s is t)

and run it from the command line, you’d think you’d get False, just like in the REPL. Wrong!

$ python test.py
True

What gives? Why is it False in the first case and True in the second? Well, in the latter case, the Python
interpreter is getting a little clever. Before it even runs your code, it analyzes it. It sees that you have
two "Beej!" strings in there, so it just makes them the same one to save you memory. Since strings are
immutable, you can’t tell the difference.

17.4 Internment
In that same example, above:

>>> s = "Beej!"
>>> t = "Beej!"
>>> s is t
False

what if we use a different string, like “Alice”?

>>> s = "Alice"
>>> t = "Alice"
>>> s is t
True

True?? What’s up with that? Why does Alice get special treatment?

Or look at this:



Chapter 17. Appendix C: Assignment Behavior 190

>>> x = 257
>>> y = 257
>>> x is y
False

which is fine—but then check this out, with 256 instead of 257:

>>> x = 256
>>> y = 256
>>> x is y
True

True, again?

We’re getting into a deep language feature of Python called internment. Basically Python makes sure to
only have one copy in memory of certain, specific values of data.

For these values, all variables will refer to the same item in memory.

They are:

• Integers between -5 and 256 inclusive.
• Strings that contain only letters, numbers, or underscores.
• The None object.
• The True and False objects.

This is why "Beej!" isn’t interned (because it contains punctuation), and why "Alice" is interned.

You can intern your own strings with sys.intern() for dictionary lookup optimization, but that’s some-
thing 99.99999% of the Python programming populace will never bother doing.



Chapter 18

Appendix D: Number Bases

18.1 How to Count like a Boss
You all have figured out by now how much I love numbers. So I’m going to keep talking about them!
Yay!

At some point, you might have heard that computers run on a bunch of 1s and 0s. That they’re binary. But
what does that mean?

As humans, we’re used to numbers. We use them all the time. 7 Dwarves. Speed limit 55. 99 bottles of
[your favorite beverage] on the wall.

We use the digits 0-9. And we use them repeatedly.

Computers, though, only have two digits: 0 and 1.

That seems kind of limiting. What happens if you want to go higher than 1, to say, 2?

Fortunately, there is a workaround. When computers want to go higher than 1, they do the same thing we
humans do when we want to go higher than 9: we all add another place.

As a human counting apples on a table, you start with 0, 1, and keep going… 7, 8, 9… and then you’re
out of digits for the ones place, which represents the number of individual items (1s of items) we’ve seen
so far.

So you add another place, the tens place, which represents the number of 10s of items we’ve seen so far.

If we count to 27 apples, a number made up of 2 and 7, we know we have 2 10s of apples, and 7 1s of
apples. Let that sink in. Every value in the 10s place is worth 10 apples. And every value in the 1s place
is worth 1 apple.

Therefore for 27 apples, we have

2 × 10 + 7 × 1 = 27
apples.

Let’s do the same thing with $100. With that, I’m saying there’s a 1 in the 100s place, a 0 in the 10s place,
and a 0 in the 1s place. This means the value is

1 × 100 + 0 × 10 + 0 × 1
or $100.

Computers go through this same process when they run out of digits, except they run out of digits a lot
sooner, since they only have two of them.

Let’s count apples in binary.

0, 1… oh no! We’re out of digits. We have to add another place. Except this time, in binary, it’s not the
10s place… it’s the 2s place.

191



Chapter 18. Appendix D: Number Bases 192

0, 1, 10, 11… out of digits again! We have to add another place. This time it’s the 4s place:

0, 1, 10, 11, 100.

Let’s look at that last number. In binary, that’s saying we have 1 4, 0 2s, and 0 1s. For a total value of 4.
For 5, we just have to put a 1 in the 1s place: 101.

In fact, we can take any number and digest it that way. Take the human number 7. That’s made up of one
4, one 2, and one 1. 4 + 2 + 1 = 7. So in binary, we need a 1 in the 4s place, the 2s place, and the 1s
place. Which looks like this in binary: 111.

We’ve written the number 7 in two “languages”. In human language, it looks like 7. In computer language
it looks like 111.
But, and this is important: human 7 and computer 111 are the same number. They’re just written in a
different language, of sorts.

18.2 Number Bases
These “number languages” actually have names for convenience. Human numbers are called Jeff, and
computer numbers, Alice.

I’m kidding. That’s completely false—they’re not named that.

Human numbers are called decimal numbers.

Computer 1-and-0 numbers are called binary numbers.

We also refer to these numbers by something called their base. This basically means “the number of digits
this number system has”.

In decimal, we have 10 digits: 0-9. So decimal is a base 10 numbering system.

In binary, we have 2 digits: 0 and 1. So binary is a base 2 numbering system.

As we saw in the previous section, 7 in decimal (base 10) is the same as 111 in binary (base 2).

And we also saw that as we counted up in any numbering system, when we ran out of digits, we had to
add another place to create higher-valued numbers.

There are other number bases in use. In fact, for any number you can think of, you can use that as a
base for a numbering system. Base 3. Base 3490. Base 27. Whatever you want. Of course, a base 3490
numbering system will have 3490 different digits, so I don’t know what you’re going to use for those…
you’ll have to come up with a lot of new shapes to draw numbers with.

Base 8, AKA octal, isn’t that common any longer, but used to be used by programmers consistently. Since
it’s base 8, it has the digits 0-7 available to use. When you use them up, you have to add another place,
the 8s place.

Notice how when you add a second place when you’re adding up, the value of that place is the base!

When you run out of digits with decimal (base 10), you add the 10s place.

When you run out of digits with binary (base 2), you add the 2s place.

When you run out of digits with octal (base 8), you add the 8s place.

More generally, the place value is the base to the power of how many digits you are from the right of the
number, just counting up.

With the decimal number 1234, we have 1 in the thousands place, 2 in the hundreds, 3 in the tens place,
and 4 in the ones place. But the place values 1000, 100, 10, and 1 are all powers of 10:

100 = 1 101 = 10 102 = 100 103 = 1000
And it’s the same in binary. If we have the binary number 1011, that’s 1 in the 8s place, 0 in the 4s place,
1 in the 2s place, and 1 in the 1s place.

20 = 1 21 = 2 22 = 4 23 = 8



Chapter 18. Appendix D: Number Bases 193

So the base is also tied into the value that any place in a number represents. Which makes sense, since
we have to add a new place when we run out of digits, and if we have digits 0-9, that next place must
represent the number of 10s, because that’s what comes after 9.

18.3 Hexadecimal, Base 16
Hexadecimal, or hex for short, is a really common number base for programmers. And it’s an interesting
one to look at because, at base 16, it has more digits than base 10. With base 10, we have 0-9. But with
base 16, we have 0 through… what?

Since we need more symbols to represent digits in base 16 than then normal arabic numerals we use for
0-9, we’ve gone ahead and co-opted the first part of the latin alphabet. We have 10 digits in 0-9, and we
grabbed 6 more “digits” with A-F to get up to 16 total digits.

That means when counting apples on the table in hex, we count:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11, 12 …

(Upper and lower case don’t matter when writing numbers in hex.)

Look what happened when we got to F and ran out of digits: we added a new place. What value does that
place have?

Since this is base 16, it has to be the 16s place.

TODO

18.4 Specifying the Number Base in Python
When you write down a number in your code, you have to tell Python what the base is, or it’ll assume you
mean decimal (base 10).

For example, if I write

x = 10101011

Is that binary? I mean, it looks like it!

But it’s not! Because we didn’t indicate otherwise, Python assumes this is the decimal number ten million
one hundred one thousand eleven.

We have some options ## Writing Numbers Down

Throughout all this, it’s important to remember that number bases are just other languages for representing
the same number. You might write number in code as



Chapter 19

Accelerating Beyond IDLE

19.1 Objectives
• Install a real IDE
• Learn about the command line.
• Get your terminal/shell up and running, and explain how it’s used

19.2 What with the What Now?
We’ve been using IDLE to edit code, and that’s fine to get started. But it’s a little bit underpowered for
getting to the next level when it comes to programming.

In this section, we’ll look at some tools that professional programmers use to get the job done.

19.3 The Terminal
Back in the day, people accessed mainframes through dedicated pieces of hardware called terminals.
These looked like old TV sets with keyboards attached. Screens were typically monochrome, either white,
green, or amber colored, with pixely text.

Barely anyone has a real terminal anymore, but they have programs called terminal emulators that pretend
to be terminals. In fact, real terminals are so rare, and terminal emulators are so common, if you hear
someone say “terminal”, they’re certainly talking about a terminal emulator.

So a terminal emulator is a program you run that gives you a text window to interact with your computer.

You know how you point, click, and drag with the mouse to command your computer to do things? We’re
going to do the same things, except we’re going type commands in to get them done, instead.

19.3.1 The Shell
Sometimes you’ll hear people talk about the “shell” and “terminal” interchangeably.

Technically, though, the terminal is what you launch, and then the terminal immediately launches another
program, the shell, that you interact with.

The terminal is pretty dumb on its own. All it does it handle input from the keyboard and output
to its “screen”. It’s the middleperson between you and the shell. The shell is the real brains of the
outfit.

The shell is a program that takes your typed-in commands and executes them, and tells you if something
went wrong.

194



Chapter 19. Accelerating Beyond IDLE 195

The most popular shell program on Unix-likes and Macs is the Bourne Again Shell (Bash)1, although
the Z-shell (Zsh) is growing in popularity. Bash is known by a $ prompt (sometimes prefixed with other
information about which directory you’re in, or something similar). Zsh uses a % prompt.

There are multitudes of shells, but we’ll just assuming you’re going to use Bash or Zsh (with a hat-tip to
Windows’s built-in shells), and they’re compatible enough for our purposes.

19.3.2 Windows Terminals and Shells
For Windows, there are plenty of options, some of which you have installed already.

• CMD: classic shell with origins way back in the MS-DOS days.
• PowerShell: a new, more powerful shell.
• Bash via Git: the famous Git2 software package has a bash shell called, appropriately, “gitbash”.
• Bash via WSL: if you install WSL (below), it uses bash, as well.

Unless you’re going with one of the bash options, you should use PowerShell because it’s newer, better,
and maintained.

Almost all of the bash commands we use in this guide also work in PowerShell and CMD.

Hitting the Windows key and running cmd will bring up the CMD prompt. (Type exit to get out.)

Hitting the Windows key and running PowerShell will bring up the PowerShell prompt. (Type exit to
get out.)

19.3.3 Windows gitbash
Git3 is a source code control system. And it’s great. Tons of people use it. You should install it.

When you install it, it installs a bash shell called gitbash that you can use.

19.3.4 Windows WSL
The Windows Subsystem for Linux is an awesome piece of kit. It unobtrusively puts a little Linux install
on your Windows machine. And then you can use the Linux command line.

To install Follow the WSL setup instructions4

There’s a recommendation in there to also install Windows Terminal, an alternate terminal to the existing
ones. It’s a good choice.

After installing, update the system:

sudo apt update
sudo apt -y upgrade

and Python should be there; running this should get you the version number:

python3 --version

You can open a File Explorer window with:

iexplore.exe .

(Yes, that’s a period after a space at the end.)
1This is a bit of a pun around the original Bourne Shell from back in the day. Bash improves on it a bit.
2https://git-scm.com/
3https://git-scm.com/downloads
4https://learn.microsoft.com/en-us/windows/wsl/install

https://git-scm.com/
https://git-scm.com/downloads
https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/terminal/install


Chapter 19. Accelerating Beyond IDLE 196

19.3.5 Mac
Macs come with a terminal built-in. Run the Terminal app and you’ll be presented with a bash shell
prompt.

19.3.6 Linux/Unix-likes
All Unix-likes come with a variety of terminals and shells. Google for your distribution.

19.4 Installing an IDE
There are a lot of IDEs out there, but a good free one is VS Code.

Visit the Visual Studio Code5 website for downloads.

Let’s get it installed!

19.4.1 Windows VS Code
When you install:

• Make sure “Add Path” is checked
• Check “Register Code as an editor for supported file types”
• Recommended: Check “Add ‘Open with Code’ option”

If you’re using WSL, first run VS Code from outside WSL, and install the “Remote WSL” extension.
Then you should be able to run it from inside WSL.

19.4.2 Mac
Just install it. No special instructions.

19.4.3 Linux and other Unix-likes
Linux and Unix-like users can use their package manager to install VS Code. Google for
ubuntu vscode install, substituting the name of your distro for ubuntu.

If you already have a code editor you prefer using (Vim, Emacs, Sublime, Atom, PyCharm, etc.) feel free
to use that, no problem!

19.5 Running VS Code
In the shell of your choice, if all has gone well, you should be able to type:

code

and have it launch VS Code.

Once launched, click the icon on the left bar of VS Code to manage extensions.

• Install Python extension
• Install Pylint extension

19.6 Using a Barebones Editor and Terminal
Not all development environments are integrated. Some programmers use standalone editors and debug-
gers to get the work done.

A typical cycle is:
5https://code.visualstudio.com/

https://code.visualstudio.com/


Chapter 19. Accelerating Beyond IDLE 197

1. Edit code in your editor
2. Run the code from the command line
3. Check the output, prepare to debug
4. Repeat!

19.6.1 Start with the Terminal
We’re going to do this old-school. Programmers have been using the command line for over 10,000 years,
and it has staying power for a reason.

Launch a terminal and bring up a shell. You can use another shell if you want, but I’ll be talking bash/zsh
here.

At the prompt, type the following commands, one per line:

cd
mkdir bgpython
cd bgpython
ls -la

These commands do four amazing things:

1. cd means change directory. (A directory is the same as a folder.) On a line by itself, it means
“change to my home directory”.

2. mkdir means make directory. We’re creating a new folder called bgpython.

3. cd bgpython to change into that directory.

4. ls -la to get a long directory listing (i.e. all the files in that folder.)

At this point you should see something like this:

$ ls -la
total 0
drwxr-xr-x 2 beej staff 64 Nov 18 23:14 .
drwxr-xr-x+ 123 beej staff 3936 Nov 18 23:14 ..

This is showing you all the files you have. Namely, there are two of them: . and ... These mean “this
directory” and “parent directory”, respectively. (You know how folders can be inside other folders? The
outer folder is called the “parent” folder, which is what the parent directory is. If you want to get back to
your home directory from here, you can type cd ...)

You should think of the shell as “being” in a certain directory at any particular time. You can cd
into directories, or cd .. back into the parent, or cd to get to your home directory from anywhere.
It’s like the folder you have open that has focus in a GUI.

(The remaining information on each line tells you the permissions on the file, who owns it, how big it is,
when it was modified, and so on. We can worry about that later.)

Other than those there are no other files. We’ll soon fix that! Let’s add a Python program and run it!

19.7 Launching Your Code Editor
Usually launching an editor to edit a file is as simple as typing the editor name directly followed by the
filename on the command line.

For example, to launch VS Code to edit the file hello.py:

code hello.py

But wait–isn’t VS Code a full-fledged IDE? Yes, it is. Another popular editor is Vim:



Chapter 19. Accelerating Beyond IDLE 198

vim hello.py

But in any case, you’re in the editor and ready to type code.

This is your canvas! This is where the magic happens!

If you get in Vim and have no idea how to get out, hit the ESC key and then type :q! and hit
RETURN—this will exit without saving. If you want to save and exit, hit ESC then type ZZ in caps.

Vim is a complex editor that is hard to learn. But after you learn it, I maintain it’s the fastest editor
on the planet. I’m using it to type this very sentence right now.

To learn it, I recommend OpenVim’s interactive Vim tutorial and this reference of Vim commands
from beginner to expert.

Type the following6 into your editor (the line numbers, below, are for reference only and shouldn’t be
typed in):

1 print("Hello, world!")
2 print("My name's Beej and this is (possibly) my first program!")

Pull down File→Save to save the file.

19.8 Running the Program!
Pop back into your terminal window and type ls -la to get a directory listing:

$ ls -la
total 8
drwxr-xr-x 3 beej staff 96 Nov 18 23:27 .
drwxr-xr-x+ 123 beej staff 3936 Nov 18 23:14 ..
-rw-r--r-- 1 beej staff 87 Nov 18 23:27 hello.py

There it is! hello.py clocking in at 87 bytes (characters, roughly) in size.

Let’s run this puppy. Remember how the program is just a recipe for doing a thing—what do you think
our hello.py program does? Guess!

Then type this to run it (if python doesn’t work, try python3 or py depending on your system):

python hello.py

and hit RETURN! [Angelic Chorus!]

$ python hello.py
Hello, world!
My name's Beej and this is (possibly) my first program!

You just wrote some instructions and the computer carried it out!

Next up: write a Quake III clone!

Okay, so maybe there might be a small number of in between things that I skimmed over, but, as Obi-Wan
Kenobi once said, “You’ve taken your first step into a larger world.”

6https://beej.us/guide/bgpython/source/examples/hello.py

https://www.openvim.com/
https://thevaluable.dev/vim-commands-beginner/
https://thevaluable.dev/vim-commands-beginner/
https://beej.us/guide/bgpython/source/examples/hello.py


Chapter 19. Accelerating Beyond IDLE 199

19.9 Exercises
Remember to use the four problem-solving steps to solve these problems: understand the problem, devise
a plan, carry it out, look back to see what you could have done better.

1. Make another program called dijkstra.py that prints out your three favorite Edsger Dijkstra
quotes7.

19.10 Summary
• Move around the directory hierarchy using the shell
• Edit some source code in an editor
• Run that program from the command line

7https://en.wikiquote.org/wiki/Edsger_W._Dijkstra

https://en.wikiquote.org/wiki/Edsger_W._Dijkstra
https://en.wikiquote.org/wiki/Edsger_W._Dijkstra


Index

Apollo 13, 5

email to Beej, 2

mirroring, 2

translations, 2

200


	Intro
	Audience
	Platform and Tools
	Official Homepage and Books For Sale
	Email Policy
	Mirroring
	Note for Translators
	Copyright, Distribution, and Legal
	Dedication
	Publishing Information

	What is Programming, Anyway?
	Objectives
	More Terminology Than You Wanted
	What's This Talk About Problem Solving?
	So How To Solve It?
	What is Python?
	Summary

	What software will I need?
	Objectives
	What Is All This?
	Installing Python
	Windows
	Mac
	Linux/Unix-likes

	Running IDLE
	Your First Command
	Summary

	How do I write a program?
	Objectives
	The Problem That Needs Solving
	Launching your IDE and Opening a File
	Running the Program!
	Exercises
	Summary

	Data and Processing Data
	Objective
	Data, Variables, and Math
	Assigning from One Variable to Another
	Your Mental Model of Computation
	User Input
	Data Types
	Converting Between Data Types
	Input Two Numbers and Print the Sum
	Wrapping it Up
	Exercises
	Summary

	Flow Control and Looping
	Objective
	Chapter Project Specification
	What is Flow Control?
	Boolean Algebra and Expressions
	Boolean Operations in Python
	The Almighty if Statement
	And Now: while Loops!
	Looping: for Loops
	When while and When for?
	Chapter Project
	Exercises
	Summary

	Strings
	Objective
	Chapter Project Specification
	What is a String?
	Creating Strings
	Converting Other Types To Strings and Vice Versa
	String Concatenation with +
	Midterm Challenge
	Getting Individual Characters From Strings
	Slices
	Midterm Challenge
	Interlude: Mutable versus Immutable Types
	for-loops with Strings
	String Functions and Methods
	Formatted Output with F-Strings
	.format() Method
	% printf Operator

	Chapter Project
	Exercises
	Summary

	Lists
	Objective
	Chapter Project Specification
	What Are Lists?
	List Assignments
	for and Lists—Powerful Stuff
	for and enumerate()
	Midterm: Doubling The Values
	Built-in Functions for Lists
	What Good Are They?
	Midterm Challenge
	Building New Lists, Repeating and Empty
	List Comprehensions
	Lists of Lists
	Chapter Project Implementation
	Exercises
	Summary

	Dictionaries
	Objective
	Chapter Project Specification
	What are Dictionaries?
	Initializing a Dictionary
	Speed Demon
	Does this dict have this key?
	Iterating over Dictionaries
	Common Built-in Dictionary Functionality
	Dictionary Comprehensions
	Dictionaries of Dictionaries
	Dictionaries are Mutable
	The Chapter Project
	Exercises
	Summary

	Functions
	Objective
	Chapter Project Specification
	What Are Functions?
	Using Built-In Functions
	Arguments
	Writing Your Own Functions
	Multiple Return Values
	What Makes a Good Function
	Positional Arguments versus Keyword Arguments
	Interlude: Evaluation Strategies
	The Chapter Project
	Exercises
	Summary

	Classes and Objects
	Objective
	Chapter Project Specification
	What Problem Are We Even Trying To Solve?
	What are Classes and Objects?
	Making Different StarShips
	Attributes
	Using Attributes
	More on Methods
	Pretty Printing
	Objects are Mutable
	Objects and None
	Testing for Attributes
	Chapter Project
	Exercises
	Summary

	Importing Modules
	Objective
	Chapter Project Specification
	What and Why of Modules
	Using a Module
	Command Line Arguments
	Printing Calendars
	Importing Specific Attributes
	Learning All The Modules
	Chapter Project
	Exercises
	Summary

	Reading Files
	Objective
	Project
	What are Files, Anyway?
	Reading Files, The Classic Way
	Opening Files with with
	Reading Data a Line at a Time
	Writing files
	Chapter Project
	Exercises
	Summary

	Exceptions
	Objective
	Project
	Errors in Programs
	Classic Error Handling
	Error Handling with Exceptions
	Catching Exceptions
	Catching Multiple Exceptions
	Catching Multiple Exceptions II
	Getting More Exception Information
	Catching All Exceptions
	Finally finally
	What Else? else!
	Exception Objects
	Raising Exceptions
	Re-raising Exceptions
	Project Implementation
	Exercises
	Summary

	Appendix A: Basic Math for Programmers
	Arithmetic
	Division in Python
	Modulo, AKA Remainder
	Negative numbers
	Absolute Value
	The Power of Exponents
	Parentheses
	Square root
	Factorial
	Scientific notation
	Logarithms
	Rounding
	Large Numbers

	Appendix B: The REPL
	What is the REPL?
	Calculator
	Getting Help
	dir()—Quick and Dirty Help
	Getting out of the REPL

	Appendix C: Assignment Behavior
	How This Relates To Functions
	Is Any of This True?
	Python Compiler Optimizations
	Internment

	Appendix D: Number Bases
	How to Count like a Boss
	Number Bases
	Hexadecimal, Base 16
	Specifying the Number Base in Python

	Accelerating Beyond IDLE
	Objectives
	What with the What Now?
	The Terminal
	The Shell
	Windows Terminals and Shells
	Windows gitbash
	Windows WSL
	Mac
	Linux/Unix-likes

	Installing an IDE
	Windows VS Code
	Mac
	Linux and other Unix-likes

	Running VS Code
	Using a Barebones Editor and Terminal
	Start with the Terminal

	Launching Your Code Editor
	Running the Program!
	Exercises
	Summary


