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Chapter 1

Foreword

C is not a big language, and it is not well served by a big book.
—Brian W. Kernighan, Dennis M. Ritchie

No point in wasting words here, folks, let’s jump straight into the C code:

E((ck?main((z?(stat(M,&t)?P+=a+'{'?0:3:
execv(M, k), a=G, i=P, y=G&255,
sprintf(Q,y/'@"'-3?A(*L(V(%d+%d)+%d, Q)

And they lived happily ever after. The End.
What’s this? You say something’s still not clear about this whole C programming language thing?

Well, to be quite honest, I’'m not even sure what the above code does. It’s a snippet from one of the entries in
the 2001 International Obfuscated C Code Contest!, a wonderful competition wherein the entrants attempt
to write the most unreadable C code possible, with often surprising results.

The bad news is that if you’re a beginner in this whole thing, all C code you see probably looks obfuscated!
The good news is, it’s not going to be that way for long.

What we’ll try to do over the course of this guide is lead you from complete and utter sheer lost confusion
on to the sort of enlightened bliss that can only be obtained through pure C programming. Right on.

In the old days, C was a simpler language. A good number of the features contained in this book and a lot
of the features in the Library Reference volume didn’t exist when K&R wrote the famous second edition of
their book in 1988. Nevertheless, the language remains small at its core, and I hope I’ve presented it here in
a way that starts with that simple core and builds outward.

And that’s my excuse for writing such a hilariously large book for such a small, concise language.

Thttps://www.ioccc.org/
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1.1 Audience

This guide assumes that you’ve already got some programming knowledge under your belt from another
language, such as Python?, JavaScript?, Java*, Rust®, Go®, Swift’, etc. (Objective-C® devs will have a par-
ticularly easy time of it!)

We’re going to assume you know what variables are, what loops do, how functions work, and so on.

If that’s not you for whatever reason the best I can hope to provide is some honest entertainment for your
reading pleasure. The only thing I can reasonably promise is that this guide won’t end on a cliffhanger... or
will it?

1.2 How to Read This Book

The guide is in two volumes, and this is the first: the tutorial volume!
The second volume is the library reference?, and it’s far more reference than tutorial.

If you’re new, go through the tutorial part in order, generally. The higher you get in chapters, the less
important it is to go in order.

And no matter your skill level, the reference part is there with complete examples of the standard library
function calls to help refresh your memory whenever needed. Good for reading over a bowl of cereal or
other time.

Finally, glancing at the index (if you’re reading the print version), the reference section entries are italicized.

1.3 Platform and Compiler

I’ll try to stick to Plain OI’-Fashioned ISO-standard C'°. Well, for the most part. Here and there I might go
crazy and start talking about POSIX!! or something, but we’ll see.

Unix users (e.g. Linux, BSD, etc.) try running cc or gcc from the command line—you might already have a
compiler installed. If you don’t, search your distribution for installing gcc or clang.

Windows users should check out Visual Studio Community'?. Or, if you’re looking for a more Unix-like
experience (recommended!), install WSL!2 and gcc.

Mac users will want to install XCode'4, and in particular the command line tools.

There are a lot of compilers out there, and virtually all of them will work for this book. And a C++ compiler
will compile a lot of (but not all!) C code. Best use a proper C compiler if you can.

Zhttps://en.wikipedia.org/wiki/Python_(programming_language)
3https://en.wikipedia.org/wiki/JavaScript
“https://en.wikipedia.org/wiki/Java_(programming_language)
Shttps://en.wikipedia.org/wiki/Rust_(programming_language)
Shttps://en.wikipedia.org/wiki/Go_(programming_language)
"https://en.wikipedia.org/wiki/Swift_(programming_language)
8https://en.wikipedia.org/wiki/Objective-C
9https://beej.us/guide/bgclr/
10https://en.wikipedia.org/wiki/ANSI_C
Uhttps://en.wikipedia.org/wiki/POSIX
Lhttps://visualstudio.microsoft.com/vs/community/
3https://docs.microsoft.com/en-us/windows/wsl/install-win10
14https://developer.apple.com/xcode/
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1.4 Official Homepage

This official location of this document is https://beej.us/guide/bgc/!>. Maybe this’ll change in the future, but
it’s more likely that all the other guides are migrated off Chico State computers.

1.5 Email Policy

I’'m generally available to help out with email questions so feel free to write in, but I can’t guarantee a
response. I lead a pretty busy life and there are times when I just can’t answer a question you have. When
that’s the case, I usually just delete the message. It’s nothing personal; I just won’t ever have the time to give
the detailed answer you require.

As a rule, the more complex the question, the less likely I am to respond. If you can narrow down your
question before mailing it and be sure to include any pertinent information (like platform, compiler, error
messages you’re getting, and anything else you think might help me troubleshoot), you’re much more likely
to get a response.

If you don’t get a response, hack on it some more, try to find the answer, and if it’s still elusive, then write
me again with the information you’ve found and hopefully it will be enough for me to help out.

Now that I’ve badgered you about how to write and not write me, I’d just like to let you know that I fully
appreciate all the praise the guide has received over the years. It’s a real morale boost, and it gladdens me to
hear that it is being used for good! : -) Thank you!

1.6 Mirroring

You are more than welcome to mirror this site, whether publicly or privately. If you publicly mirror the site
and want me to link to it from the main page, drop me a line at beej@beej . us.

1.7 Note for Translators
If you want to translate the guide into another language, write me at beej@beej.us and I'll link to your
translation from the main page. Feel free to add your name and contact info to the translation.

Please note the license restrictions in the Copyright and Distribution section, below.

1.8 Copyright and Distribution

Beej’s Guide to C is Copyright © 2021 Brian “Beej Jorgensen” Hall.

With specific exceptions for source code and translations, below, this work is licensed under the Creative
Commons Attribution-Noncommercial-No Derivative Works 3.0 License. To view a copy of this license,
visit https://creativecommons.org/licenses/by-nc-nd/3.0/ orsend a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco, California, 94105, USA.

One specific exception to the “No Derivative Works” portion of the license is as follows: this guide may
be freely translated into any language, provided the translation is accurate, and the guide is reprinted in its
entirety. The same license restrictions apply to the translation as to the original guide. The translation may
also include the name and contact information for the translator.

The C source code presented in this document is hereby granted to the public domain, and is completely free
of any license restriction.

Educators are freely encouraged to recommend or supply copies of this guide to their students.

Shttps://beej.us/guide/bgc/
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Contact beej@beej . us for more information.

1.9 Dedication

The hardest things about writing these guides are:

* Learning the material in enough detail to be able to explain it

* Figuring out the best way to explain it clearly, a seemingly-endless iterative process

+ Putting myself out there as a so-called authority, when really I’m just a regular human trying to make
sense of it all, just like everyone else

+ Keeping at it when so many other things draw my attention

A lot of people have helped me through this process, and I want to acknowledge those who have made this
book possible.

+ Everyone on the Internet who decided to help share their knowledge in one form or another. The free
sharing of instructive information is what makes the Internet the great place that it is.

« The volunteers at cppreference.com'® who provide the bridge that leads from the spec to the real world.

+ The helpful and knowledgeable folks on comp.lang.c!” and r/C_Programming'® who got me through
the tougher parts of the language.

+ Everyone who submitted corrections and pull-requests on everything from misleading instructions to

typos.
Thank you! v

16https://en‘cppreference.com/
17https://groups.google.com/g/comp.lang.c
8https://www.reddit.com/r/C_Programming/
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Chapter 2

Hello, World!

2.1 What to Expect from C

“Where do these stairs go?”
“They go up.”

—Ray Stantz and Peter Venkman, Ghostbusters

C is a low-level language.

It didn’t use to be. Back in the day when people carved punch cards out of granite, C was an incredible way
to be free of the drudgery of lower-level languages like assembly.

But now in these modern times, current-generation languages offer all kinds of features that didn’t exist in
1972 when C was invented. This means C is a pretty basic language with not a lot of features. It can do
anything, but it can make you work for it.

So why would we even use it today?

* As alearning tool: not only is C a venerable piece of computing history, but it is connected to the bare
metal® in a way that present-day languages are not. When you learn C, you learn about how software
interfaces with computer memory at a low level. There are no seatbelts. You’ll write software that
crashes, I assure you. And that’s all part of the fun!

+ As a useful tool: C still is used for certain applications, such as building operating systems® or in
embedded systems*. (Though the Rust® programming language is eyeing both these fields!)

If you’re familiar with another language, a lot of things about C are easy. C inspired many other languages,
and you’ll see bits of it in Go, Rust, Swift, Python, JavaScript, Java, and all kinds of other languages. Those
parts will be familiar.

The one thing about C that hangs people up is pointers. Virtually everything else is familiar, but pointers are
the weird one. The concept behind pointers is likely one you already know, but C forces you to be explicit
about it, using operators you’ve likely never seen before.

It’s especially insidious because once you grok® pointers, they’re suddenly easy. But up until that moment,
they’re slippery eels.

Uhttps://en.wikipedia.org/wiki/Assembly_language
Zhttps://en.wikipedia.org/wiki/Bare_machine
3https://en.wikipedia.org/wiki/Operating_system
“https://en.wikipedia.org/wiki/Embedded_system
Shttps://en.wikipedia.org/wiki/Rust_(programming_language)
Shttps://en.wikipedia.org/wiki/Grok
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Everything else in C is just memorizing another way (or sometimes the same way!) of doing something
you’ve done already. Pointers are the weird bit. And, arguably, even pointers are variations on a theme
you’re probably familiar with.

So get ready for a rollicking adventure as close to the core of the computer as you can get without assembly,
in the most influential computer language of all time’. Hang on!

2.2 Hello, World!

This is the canonical example of a C program. Everyone uses it. (Note that the numbers to the left are for
reader reference only, and are not part of the source code.)

/* Hello world program */
#include <stdio.h>
int main(void)

{
printf("Hello, World!\n"); // Actually do the work here

We’re going to don our long-sleeved heavy-duty rubber gloves, grab a scalpel, and rip into this thing to see
what makes it tick. So, scrub up, because here we go. Cutting very gently...

Let’s get the easy thing out of the way: anything between the digraphs /* and */ is a comment and will be
completely ignored by the compiler. Same goes for anything on a line after a //. This allows you to leave
messages to yourself and others, so that when you come back and read your code in the distant future, you’ll
know what the heck it was you were trying to do. Believe me, you will forget; it happens.

Now, what is this #include? GROSS! Well, it tells the C Preprocessor to pull the contents of another file
and insert it into the code right there.

Wait—what’s a C Preprocessor? Good question. There are two stages® to compilation: the preprocessor
and the compiler. Anything that starts with pound sign, or “octothorpe”, (#) is something the preprocessor
operates on before the compiler even gets started. Common preprocessor directives, as they’re called, are
#include and #define. More on that later.

Before we go on, why would I even begin to bother pointing out that a pound sign is called an octothorpe?
The answer is simple: I think the word octothorpe is so excellently funny, I have to gratuitously spread its
name around whenever I get the opportunity. Octothorpe. Octothorpe, octothorpe, octothorpe.

So anyway. After the C preprocessor has finished preprocessing everything, the results are ready for the
compiler to take them and produce assembly code®, machine code'?, or whatever it’s about to do. Machine
code is the “language” the CPU understands, and it can understand it very rapidly. This is one of the reasons
C programs tend to be quick.

Don’t worry about the technical details of compilation for now; just know that your source runs through the
preprocessor, then the output of that runs through the compiler, then that produces an executable for you to
run.

What about the rest of the line? What’s <stdio.h>? That is what is known as a header file. It’s the dot-h
at the end that gives it away. In fact it’s the “Standard I/0” (stdio) header file that you will grow to know

71 know someone will fight me on that, but it’s gotta be at least in the top three, right?

8Well, technically there are more than two, but hey, let’s pretend there are two—ignorance is bliss, right?
%https://en.wikipedia.org/wiki/Assembly_language
Ohttps://en.wikipedia.org/wiki/Machine_code
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and love. It gives us access to a bunch of I/O functionality!. For our demo program, we’re outputting the
string “Hello, World!”, so we in particular need access to the printf () function to do this. The <stdio.h>
file gives us this access. Basically, if we tried to use printf () without #include <stdio.h>, the compiler
would have complained to us about it.

How did I know I needed to #include <stdio.h> for printf()? Answer: it’s in the documentation. If
you’re on a Unix system, man 3 printf and it’ll tell you right at the top of the man page what header files
are required. Or see the reference section in this book. : -)

Holy moly. That was all to cover the first line! But, let’s face it, it has been completely dissected. No mystery
shall remain!

So take a breather...look back over the sample code. Only a couple easy lines to go.
Welcome back from your break! I know you didn’t really take a break; I was just humoring you.

The next line is main(). This is the definition of the function main(); everything between the squirrelly
braces ({ and }) is part of the function definition.

(How do you call a different function, anyway? The answer lies in the printf () line, but we’ll get to that
in a minute.)

Now, the main function is a special one in many ways, but one way stands above the rest: it is the function
that will be called automatically when your program starts executing. Nothing of yours gets called before
main(). In the case of our example, this works fine since all we want to do is print a line and exit.

Oh, that’s another thing: once the program executes past the end of main(), down there at the closing
squirrelly brace, the program will exit, and you’ll be back at your command prompt.

So now we know that that program has brought in a header file, stdio.h, and declared a main() function
that will execute when the program is started. What are the goodies in main()?

I am so happy you asked. Really! We only have the one goodie: a call to the function printf(). You can
tell this is a function call and not a function definition in a number of ways, but one indicator is the lack of
squirrelly braces after it. And you end the function call with a semicolon so the compiler knows it’s the end
of the expression. You’ll be putting semicolons after almost everything, as you’ll see.

You’re passing one argument to the function printf(): a string to be printed when you call it. Oh, yeah—
we’re calling a function! We rock! Wait, wait—don’t get cocky. What’s that crazy \n at the end of the string?
Well, most characters in the string will print out just like they are stored. But there are certain characters that
you can’t print on screen well that are embedded as two-character backslash codes. One of the most popular is
\n (read “backslash-N” or simply “newline™) that corresponds to the newline character. This is the character
that causes further printing to continue at the beginning of the next line instead of the current. It’s like hitting
return at the end of the line.

So copy that code into a file called hello.c and build it. On a Unix-like platform (e.g. Linux, BSD, Mac,
or WSL), from the command line you’ll build with a command like so:

‘ gcc -o hello hello.c ’

(This means “compile hello.c, and output an executable called hello”.)

After that’s done, you should have a file called hello that you can run with this command:

‘ ./hello ’

(The leading . / tells the shell to “run from the current directory”.)

And see what happens:

UTechnically, it contains preprocessor directives and function prototypes (more on that later) for common input and output needs.
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Hello, World!

It’s done and tested! Ship it!

2.3 Compilation Details

Let’s talk a bit more about how to build C programs, and what happens behind the scenes there.

Like other languages, C has source code. But, depending on what language you’re coming from, you might
never have had to compile your source code into an executable.

Compilation is the process of taking your C source code and turning it into a program that your operating
system can execute.

JavaScript and Python devs aren’t used to a separate compilation step at all-though behind the scenes it’s
happening! Python compiles your source code into something called bytecode that the Python virtual machine
can execute. Java devs are used to compilation, but that produces bytecode for the Java Virtual Machine.

When compiling C, machine code is generated. This is the 1s and Os that can be executed directly and speedily
by the CPU.

Languages that typically aren’t compiled are called interpreted languages. But as we mentioned with
Java and Python, they also have a compilation step. And there’s no rule saying that C can’t be in-
terpreted. (There are C interpreters out there!) In short, it’s a bunch of gray areas. Compilation in
general is just taking source code and turning it into another, more easily-executed form.

The C compiler is the program that does the compilation.

As we’ve already said, gcc is a compiler that’s installed on a lot of Unix-like operating systems'?. And it’s
commonly run from the command line in a terminal, but not always. You can run it from your IDE, as well.

So how do we do command line builds?

2.4 Building with gcc

If you have a source file called hello.c in the current directory, you can build that into a program called
hello with this command typed in a terminal:

‘ gcc -o hello hello.c ’

The -0 means “output to this file”!®. And there’s hello. c at the end, the name of the file we want to compile.

If your source is broken up into multiple files, you can compile them all together (almost as if they were one
file, but the rules are actually more complex than that) by putting all the . c files on the command line:

‘ gcc -o awesomegame ui.c characters.c npc.c items.c ’

and they’ll all get built together into a big executable.

That’s enough to get started—Iater we’ll talk details about multiple source files, object files, and all kinds of
fun stuff.

https://en.wikipedia.org/wiki/Unix
131f you don’t give it an output filename, it will export to a file called a.out by default—this filename has its roots deep in Unix
history.
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2.5 Building with clang
On Macs, the stock compiler isn’t gcc—it’s clang. But a wrapper is also installed so you can run gcc and
have it still work.

You can also install the gcc compiler proper through Homebrew'# or some other means.

2.6 Building from IDEs

If you’re using an Integrated Development Environment (IDE), you probably don’t have to build from the
command line.

With Visual Studio, CTRL-F7 will build, and CTRL-F5 will run.
With VS Code, you can hit F5 to run via the debugger. (You’ll have to install the C/C++ Extension.)

With XCode, you can build with COMMAND-B and run with COMMAND-R. To get the command line tools,
Google for “XCode command line tools” and you’ll find instructions for installing them.

For getting started, I encourage you to also try to build from the command line—it’s history!

2.7 C Versions

C has come a long way over the years, and it had many named version numbers to describe which dialect of
the language you’re using.

These generally refer to the year of the specification.
The most famous are C89, C99, C11, and C23. We’ll focus on the last one in this book.

But here’s a more complete table:

Version Description

K&R C 1978, the original. Named after Brian Kernighan and Dennis Ritchie.
Ritchie designed and coded the language, and Kernighan co-authored the
book on it. You rarely see original K&R code today. If you do, it’ll look odd,
like Middle English looks odd to modern English readers.

C89, ANSIC, C90 In 1989, the American National Standards Institute (ANSI) produced a C
language specification that set the tone for C that persists to this day. A year
later, the reins were handed to the International Organization for
Standardization (ISO) that produced the identical C90.

C95 A rarely-mentioned addition to C89 that included wide character support.

C99 The first big overhaul with lots of language additions. The thing most people
remember is the addition of //-style comments. This is the most popular
version of C in use as of this writing.

C11 This major version update includes Unicode support and multi-threading. Be
advised that if you start using these language features, you might be
sacrificing portability with places that are stuck in C99 land. But, honestly,
1999 is getting to be a while back now.

C17,C18 Bugfix update to C11. C17 seems to be the official name, but the publication
was delayed until 2018. As far as I can tell, these two are interchangeable,
with C17 being preferred.

Cc23 The most recent specification.

14https://formulae.brew.sh/formula/gcc
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10 Chapter 2. Hello, World!

You can force GCC to use one of these standards with the - std= command line argument. If you want it to
be picky about the standard, add -pedantic.

For example:

gcc -std=cll -pedantic foo.c

For this book, I compile programs for C23 with all warnings set:

gcc -Wall -Wextra -std=c23 -pedantic foo.c




Chapter 3

Variables and Statements

“It takes all kinds to make a world, does it not, Padre?”
“So it does, my son, so it does.”

—Pirate Captain Thomas Bartholomew Red to the Padre, Pirates
There sure can be lotsa stuff in a C program.
Yup.

And for various reasons, it’ll be easier for all of us if we classify some of the types of things you can find in
a program, so we can be clear what we’re talking about.

3.1 Variables

It’s said that “variables hold values”. But another way to think about it is that a variable is a human-readable
name that refers to some data in memory.

We’re going to take a second here and take a peek down the rabbit hole that is pointers. Don’t worry about
it.

You can think of memory as a big array of bytes'. Data is stored in this “array”?. If a number is larger than
a single byte, it is stored in multiple bytes. Because memory is like an array, each byte of memory can be
referred to by its index. This index into memory is also called an address, or a location, or a pointer.

When you have a variable in C, the value of that variable is in memory somewhere, at some address. Of
course. After all, where else would it be? But it’s a pain to refer to a value by its numeric address, so we
make a name for it instead, and that’s what the variable is.

The reason I’m bringing all this up is twofold:

1. It’s going to make it easier to understand pointer variables later—they’re variables that hold the address
of other variables!
2. Also, it’s going to make it easier to understand pointers later.

So a variable is a name for some data that’s stored in memory at some address.

1A “byte” is typically an 8-bit binary number. Think of it as an integer that can only hold the values from 0 to 255, inclusive.
Technically, C allows bytes to be any number of bits and if you want to unambiguously refer to an 8-bit number, you should use the
term octet. But programmers are going assume you mean 8-bits when you say “byte” unless you specify otherwise.

2I’m seriously oversimplifying how modern memory works, here. But the mental model works, so please forgive me.

11
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3.1.1 Variable Names

You can use any characters in the range 0-9, A-Z, a-z, and underscore for variable names, with the following
rules:

* You can’t start a variable with a digit 0-9.
* You can’t start a variable name with two underscores.
* You can’t start a variable name with an underscore followed by a capital A-Z.

For Unicode, just try it. There are some rules in the spec in §D.2 that talk about which Unicode codepoint
ranges are allowed in which parts of identifiers, but that’s too much to write about here and is probably
something you’ll never have to think about anyway.

3.1.2 Variable Types

Depending on which languages you already have in your toolkit, you might or might not be familiar with the
idea of types. But C’s kinda picky about them, so we should do a refresher.

Some example types, some of the most basic:

Type Example C Type
Integer 3490 int
Floating point 3.14159 float?
Character (single) 'c' char
String "Hello, world!" char **

C makes an effort to convert automatically between most numeric types when you ask it to. But other than
that, all conversions are manual, notably between string and numeric.

Almost all of the types in C are variants on these types.

Before you can use a variable, you have to declare that variable and tell C what type the variable holds. Once
declared, the type of variable cannot be changed later at runtime. What you set it to is what it is until it falls
out of scope and is reabsorbed into the universe.

Let’s take our previous “Hello, world” code and add a couple variables to it:

#include <stdio.h>

int main(void)

{
int 1i; // Holds signed integers, e.g. -3, -2, 0, 1, 10
float f; // Holds signed floating point numbers, e.g. -3.1416
printf("Hello, World!\n"); // Ah, blessed familiarity

}

There! We’ve declared a couple of variables. We haven’t used them yet, and they’re both uninitialized. One
holds an integer number, and the other holds a floating point number (a real number, basically, if you have a
math background).

3I’m lying here a little. Technically 3.14159 is of type double, but we’re not there yet and I want you to associate float with
“Floating Point”, and C will happily coerce that type into a float. In short, don’t worry about it until later.

“4Read this as “pointer to a char” or “char pointer”. “Char” for character. Though I can’t find a study, it seems anecdotally most
people pronounce this as “char”, a minority say “car”, and a handful say “care”. We’ll talk more about pointers later.
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Uninitialized variables have indeterminate value®. They have to be initialized or else you must assume they
contain some nonsense number.

This is one of the places C can “get you”. Much of the time, in my experience, the indeterminate
value is zero... but it can vary from run to run! Never assume the value will be zero, even if you see
it is. Always explicitly initialize variables to some value before you use them’.

9This isn’t strictly 100% true. When we get to learning about static storage duration, you’ll find the some variables are
initialized to zero automatically. But the safe thing to do is always initialize them.

What’s this? You want to store some numbers in those variables? Insanity!

Let’s go ahead and do that:

int main(void)

{
int 1i;
i =2; // Assign the value 2 into the variable i
printf("Hello, World!\n");

}

Killer. We’ve stored a value. Let’s print it.

We’re going to do that by passing two amazing arguments to the printf() function. The first argument is
a string that describes what to print and how to print it (called the format string), and the second is the value
to print, namely whatever is in the variable i.

printf() hunts through the format string for a variety of special sequences which start with a percent sign
(%) that tell it what to print. For example, if it finds a %d, it looks to the next parameter that was passed, and
prints it out as an integer. If it finds a %f, it prints the value out as a float. If it finds a %s, it prints a string.

As such, we can print out the value of various types like so:

#include <stdio.h>

int main(void)

{
int i = 2;
float f = 3.14;
char *s = "Hello, world!"; // char * ("char pointer") is the string type
printf("%s 1 = %d and f = %f!\n", s, i, f);

}

And the output will be:

Hello, world! i = 2 and f = 3.14!

In this way, printf () might be similar to various types of format strings or parameterized strings in other
languages you’re familiar with.

>Colloquially, we say they have “random” values, but they aren’t truly—or even pseudo-truly—random numbers.
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3.1.3 Boolean Types

C has Boolean types, true or false?

1!

Historically, C didn’t have a Boolean type, and some might argue it still doesn’t.
In C, ® means “false”, and non-zero means “true”.

So 1is true. And -37 is true. And 0 is false.

You can just declare Boolean types as ints:

int x = 1;

if (x) {

printf("x is true!\n");

In C23, you get actual bool, true, and false. Before that, if you have a modern-enough version of C, you
can #include <stdbool.h> to get the same thing.

#include <stdio.h>
#include <stdbool.h> // not needed in C23

int main(void) {
bool x = true;

if (x) {
printf("x is true!\n");

While technically you should be setting a boo1 variable to true, false, or the result of some expression the
evaluates to true or false, you can actually convert all kinds of things to bool. There are some specific rules,
but zero-ish things tend to evaluate to false, and non-zero-ish things to true.

But be careful if you mix and match since the numeric value of true is 1, probably®, and if you’re relying
on some other positive value to be true, you might get a mismatch. For example:

printf("%d\n", true == 12); // Prints "@", false!

3.2 Operators and Expressions
C operators should be familiar to you from other languages. Let’s blast through some of them here.

(There are a bunch more details than this, but we’re going to do enough in this section to get started.)

3.2.1 Arithmetic

Hopefully these are familiar:

6Technically just one bit of a char is used to represent the bool, so it can either be zero or one. Except that what goes in the
remaining (padding) bits of the char is unspecified. For false, it must surely be all zero. But for true, I’m uncertain that it must all
be zero.
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// Addition (+) and assignment (=) operators, add 3 to i
; // Subtraction, subtract 8 from i

// Multiplication

; // Division

// Modulo (division remainder)

= SO
Il
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*

ON©®w

~-

There are shorthand variants for all of the above. Each of those lines could more tersely be written as:

i+=3; // Same as "i =i + 3", add 3 to i
i-=8; // Same as "i =i - 8"
i*=9; // Same as "i =1i * 9"
i/=2; // Same as "i =i / 2"
i%=5; // Same as "i =1 % 5"

There is no exponentiation. You’ll have to use one of the pow( ) function variants from math. h.

Let’s get into some of the weirder stuff you might not have in your other languages!

3.2.2 Ternary Operator

C also includes the ternary operator. This is an expression whose value depends on the result of a conditional
embedded in it.

// If x > 10, add 17 to y. Otherwise add 37 to y.

y += x > 10? 17: 37,

What a mess! You’ll get used to it the more you read it. To help out a bit, I’ll rewrite the above expression
using if statements:

// This expression:
y += x > 10? 17: 37,

// is equivalent to this non-expression:

if (x > 10)
y += 17;
else
y += 37;

Compare those two until you see each of the components of the ternary operator.

Or, another example that prints if a number stored in x is odd or even:

printf("The number %d is %s.\n", x, X % 2 == 0? "even": "odd");

The %s format specifier in printf() means print a string. If the expression x % 2 evaluates to 0, the value
of the entire ternary expression evaluates to the string "even". Otherwise it evaluates to the string "odd".
Pretty cool!

It’s important to note that the ternary operator isn’t flow control like the if statement is. It’s just an expression
that evaluates to a value.
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3.2.3 Pre-and-Post Increment-and-Decrement
Now, let’s mess with another thing that you might not have seen.

These are the legendary post-increment and post-decrement operators:

i++; // Add one to i (post-increment)
i--; // Subtract one from i (post-decrement)

Very commonly, these are just used as shorter versions of:

i+=1; // Add one to i
i-=1; // Subtract one from i

but they’re more subtly different than that, the clever scoundrels.

Let’s take a look at this variant, pre-increment and pre-decrement:

++1i; // Add one to i (pre-increment)
--1i; // Subtract one from i (pre-decrement)

With pre-increment and pre-decrement, the value of the variable is incremented or decremented before the
expression is evaluated. Then the expression is evaluated with the new value.

With post-increment and post-decrement, the value of the expression is first computed with the value as-is,
and then the value is incremented or decremented after the value of the expression has been determined.

You can actually embed them in expressions, like this:

i = 10;
5 + i++; // Compute 5 + i, _then_ increment i

.
1

printf("%d, %d\n", i, j); // Prints 11, 15

Let’s compare this to the pre-increment operator:

i=10;
5 + ++i; // Increment i, _then_ compute 5 + i

(R
1l

printf("%d, %d\n", i, j); // Prints 11, 16

This technique is used frequently with array and pointer access and manipulation. It gives you a way to use
the value in a variable, and also increment or decrement that value before or after it is used.

But by far the most common place you’ll see this is in a for loop:

for (i = 0; i < 10; i++)
printf("i is %d\n", 1i);

But more on that later.

3.24 The Comma Operator

This is an uncommonly-used way to separate expressions that will run left to right:
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x =10, y = 20; // First assign 10 to x, then 20 to y ’

Seems a bit silly, since you could just replace the comma with a semicolon, right?

X = 10; y = 20; // First assign 10 to x, then 20 to y ’

But that’s a little different. The latter is two separate expressions, while the former is a single expression!

With the comma operator, the value of the comma expression is the value of the rightmost expression:

x=1(1, 2, 3);

printf("x is %d\n", x); // Prints 3, because 3 is rightmost in the comma list

But even that’s pretty contrived. One common place the comma operator is used is in for loops to do multiple
things in each section of the statement:

for (i =0, j = 10; i < 100; i++, j++)
printf("%d, %d\n", i, j);

We’ll revisit that later.

3.2.5 Conditional Operators

For Boolean values, we have a raft of standard operators:

== b; // True if
'= b; // True if
< b; // True if
> b; // True if
<= b; // True if
>= b; // True if

is equivalent to b

is not equivalent to b

is less than b

is greater than b

is less than or equal to b

is greater than or equal to b

JSUR DR R I I )
JSURNN R R R I )

Don’t mix up assignment (=) with comparison (==)! Use two equals to compare, one to assign.

We can use the comparison expressions with if statements:

if (a <= 10)
printf("Success!\n");

3.2.6 Boolean Operators

We can chain together or alter conditional expressions with Boolean operators for and, or, and not.

Operator Boolean meaning

&& and
| ] or
! not

An example of Boolean “and”:
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// Do something if x less than 10 and y greater than 20:

if (x < 10 && y > 20)
printf("Doing something!\n");

An example of Boolean “not”:

if ('(x < 12))
printf("x is not less than 12\n");

I has higher precedence than the other Boolean operators, so we have to use parentheses in that case.

Of course, that’s just the same as:

if (x >= 12)
printf("x is not less than 12\n");

but I needed the example!

3.2.7 The sizeof Operator
This operator tells you the size (in bytes) that a particular variable or data type uses in memory.

More particularly, it tells you the size (in bytes) that the type of a particular expression (which might be just
a single variable) uses in memory.

This can be different on different systems, except for char and its variants (which are always 1 byte).

And this might not seem very useful now, but we’ll be making references to it here and there, so it’s worth
covering.

Since this computes the number of bytes needed to store a type, you might think it would return an int. Or...
since the size can’t be negative, maybe an unsigned?

But it turns out C has a special type to represent the return value from sizeof. It’s size_t, pronounced
“size tee””. All we know is that it’s an unsigned integer type that can hold the size in bytes of anything you
can give to sizeof.

size_t shows up a lot of different places where counts of things are passed or returned. Think of it as a
value that represents a count.

You can take the sizeof a variable or expression:

int a = 999;

// %zu is the format specifier for type size_t
// If your compiler balks at the "z" part, leave it off

printf("%zu\n", sizeof a); // Prints 4 on my system
printf("%zu\n", sizeof(2 + 7)); // Prints 4 on my system
printf("%zu\n", sizeof 3.14); // Prints 8 on my system

// If you need to print out negative size_t values, use %zd

"The _t is short for type.
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Remember: it’s the size in bytes of the type of the expression, not the size of the expression itself. That’s
why the size of 2+7 is the same as the size of a—they’re both type int. We’ll revisit this number 4 in the
very next block of code...

...Where we’ll see you can take the sizeof a type (note the parentheses are required around a type name,
unlike an expression):

printf("%zu\n", sizeof(int)); // Prints 4 on my system
printf("%zu\n", sizeof(char)); // Prints 1 on all systems

It’s important to note that sizeof is a compile-time operation®. The result of the expression is determined
entirely at compile-time, not at runtime.

We’ll make use of this later on.

3.3 Flow Control

Booleans are all good, but of course we’re nowhere if we can’t control program flow. Let’s take a look at a
number of constructs: if, for, while, and do-while.

First, a general forward-looking note about statements and blocks of statements brought to you by your local
friendly C developer:

After something like an if or while statement, you can either put a single statement to be executed, or a
block of statements to all be executed in sequence.

Let’s start with a single statement:

if (x == 10) printf("x is 10\n");

This is also sometimes written on a separate line. (Whitespace is largely irrelevant in C—it’s not like Python.)

if (x == 10)
printf("x is 160\n");

But what if you want multiple things to happen due to the conditional? You can use squirrelly braces to mark
a block or compound statement.

if (x == 10) {
printf("x is 16\n");
printf("And also this happens when x is 16\n");

It’s a really common style to always use squirrelly braces even if they aren’t necessary:

if (x == 10) {
printf("x is 10\n");

Some devs feel the code is easier to read and avoids errors like this where things visually look like they’re
in the if block, but actually they aren’t.

8Except for with variable length arrays—but that’s a story for another time.
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// BAD ERROR EXAMPLE

if (x == 10)
printf("This happens if x is 10\n");
printf("This happens ALWAYS\n"); // Surprise!! Unconditional!

while and for and the other looping constructs work the same way as the examples above. If you want to
do multiple things in a loop or after an if, wrap them up in squirrelly braces.

In other words, the if is going to run the one thing after the if. And that one thing can be a single statement
or a block of statements.
3.3.1 The if-else statement

We’ve already been using if for multiple examples, since it’s likely you’ve seen it in a language before, but
here’s another:

int i = 10;
if (i > 10) {

printf("Yes, i is greater than 10.\n");
printf("And this will also print if i is greater than 10.\n");

if (i <= 10) printf("i is less than or equal to 10.\n");

In the example code, the message will print if i is greater than 10, otherwise execution continues to the next
line. Notice the squirrley braces after the if statement; if the condition is true, either the first statement or
expression right after the if will be executed, or else the collection of code in the squirlley braces after the
if will be executed. This sort of code block behavior is common to all statements.

Of course, because C is fun this way, you can also do something if the condition is false with an else clause
on your if:

int i = 99;

if (i == 10)
printf("i is 10!\n");
else {
printf("i is decidedly not 10.\n");
printf("which irritates me a little, frankly.\n");

And you can even cascade these to test a variety of conditions, like this:

int i = 99;

if (i == 10)
printf("i is 10!\n");

else if (i == 20)
printf("i is 20!\n");
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else if (i == 99) {
printf("i is 99! My favorite\n");
printf ("I can't tell you how happy I am.\n");
printf("Really.\n");

}

else
printf("i is some crazy number I've never heard of.\n");

Though if you’re going that route, be sure to check out the switch statement for a potentially better solution.
The catch is switch only works with equality comparisons with constant numbers. The above if-else
cascade could check inequality, ranges, variables, or anything else you can craft in a conditional expression.

3.3.2 The while statement

while is your average run-of-the-mill looping construct. Do a thing while a condition expression is true.

Let’s do one!

// Print the following output:

//

// i is now 0!

// i is now 1!

// [ more of the same between 2 and 7 ]
// i is now 8!

// i is now 9!

int 1 = 0,

while (i < 10) {
printf("i is now %d'\n", 1i);
i++;

}

printf("All done!\n");

That gets you a basic loop. C also has a for loop which would have been cleaner for that example.

A not-uncommon use of while is for infinite loops where you repeat while true:

while (1) {
printf("1 is always true, so this repeats forever.\n");

}

3.3.3 The do-while statement

So now that we’ve gotten the while statement under control, let’s take a look at its closely related cousin,
do-while.

They are basically the same, except if the loop condition is false on the first pass, do-while will execute
once, but while won’t execute at all. In other words, the test to see whether or not to execute the block
happens at the end of the block with do-while. It happens at the beginning of the block with while.
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Let’s see by example:

// Using a while statement:
i = 10;

// this is not executed because i is not less than 10:
while(i < 10) {
printf("while: i is %d\n", 1i);

it++;

// Using a do-while statement:
i = 10;

// this is executed once, because the loop condition is not checked until
// after the body of the loop runs:

do {
printf("do-while: i is %d\n", 1i);
i++;

} while (i < 10);

printf("All done!\n");

Notice that in both cases, the loop condition is false right away. So in the while, the loop fails, and the
following block of code is never executed. With the do-while, however, the condition is checked dafter the
block of code executes, so it always executes at least once. In this case, it prints the message, increments i,
then fails the condition, and continues to the “All done!” output.

The moral of the story is this: if you want the loop to execute at least once, no matter what the loop condition,
use do-while.

All these examples might have been better done with a for loop. Let’s do something less deterministic—
repeat until a certain random number comes up!

#include <stdio.h> // For printf
#include <stdlib.h> // For rand

int main(void)

{
int r;
do {
r = rand() % 100; // Get a random number between @ and 99
printf("%d\n", r);
} while (r !'= 37); // Repeat until 37 comes up
}

Side note: did you run that more than once? If you did, did you notice the same sequence of numbers came
up again. And again. And again? This is because rand() is a pseudorandom number generator that must
be seeded with a different number in order to generate a different sequence. Look up the srand( ) function

9https://beej.us/guide/bgclr/html/split/stdlib.html#man-srand
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for more details.

3.3.4 The for statement

Welcome to one of the most popular loops in the world! The for loop!
This is a great loop if you know the number of times you want to loop in advance.
You could do the same thing using just a while loop, but the for loop can help keep the code cleaner.

Here are two pieces of equivalent code—note how the for loop is just a more compact representation:

// Print numbers between 0 and 9, inclusive...
// Using a while statement:

i=0;
while (i < 10) {
printf("i is %d\n", 1i);
i++;

4

}

// Do the exact same thing with a for-loop:

for (i = 0; i < 10; i++) {
printf("i is %d\n", 1i);

}

That’s right, folks—they do exactly the same thing. But you can see how the for statement is a little more
compact and easy on the eyes. (JavaScript users will fully appreciate its C origins at this point.)

It’s split into three parts, separated by semicolons. The first is the initialization, the second is the loop
condition, and the third is what should happen at the end of the block if the loop condition is true. All three
of these parts are optional.

for (initialize things; loop if this is true; do this after each loop)

Note that the loop will not execute even a single time if the loop condition starts off false.

for-loop fun fact!

You can use the comma operator to do multiple things in each clause of the for loop!

for (i =0, j =999; i < 10; it++, j--) {
printf("%d, %d\n", i, j);
}

An empty for will run forever:

for(;;) { // "forever"
printf ("I will print this again and again and again\n" );
printf("for all eternity until the heat-death of the universe.\n");

printf("Or until you hit CTRL-C.\n");
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3.3.5 The switch Statement

Depending on what languages you’re coming from, you might or might not be familiar with switch, or C’s
version might even be more restrictive than you’re used to. This is a statement that allows you to take a
variety of actions depending on the value of an integer expression.

Basically, it evaluates an expression to an integer value, jumps to the case that corresponds to that value.
Execution resumes from that point. If a break statement is encountered, then execution jumps out of the
switch.

Here’s an example where, for a given number of goats, we print out a gut-feel of how many goats that is.

#include <stdio.h>

int main(void)

{

int goat_count = 2;

switch (goat_count) {
case 0:
printf("You have no goats.\n");
break;

case 1:
printf("You have a singular goat.\n");
break;

case 2:
printf("You have a brace of goats.\n");
break;

default:
printf("You have a bona fide plethora of goats!\n");
break;

In that example, the switch will jump to the case 2 and execute from there. When (if) it hits a break, it
jumps out of the switch

Also, you might see that default label there at the bottom. This is what happens when no cases match.

Every case, including default, is optional. And they can occur in any order, but it’s really typical for
default, if any, to be listed last.

So the whole thing acts like an if-else cascade:

if (goat_count == 0)
printf("You have no goats.\n");

else if (goat_count == 1)

printf("You have a singular goat.\n");
else if (goat_count == 2)

printf("You have a brace of goats.\n");
else

printf("You have a bona fide plethora of goats!\n");
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With some key differences:

» switch is often faster to jump to the correct code (though the spec makes no such guarantee).
» if-else can do things like relational conditionals like < and >= and floating point and other types,
while switch cannot.

There’s one more neat thing about switch that you sometimes see that is quite interesting: fall through.
Remember how break causes us to jump out of the switch?
Well, what happens if we don’t break?

Turns out we just keep on going into the next case! Demo!

switch (x) {

case 1:
printf("1\n");
// Fall through!

case 2:
printf("2\n");
break;

case 3:
printf("3\n");
break;

If x == 1, this switch will first hit case 1, it’ll print the 1, but then it just continues on to the next line of
code... which prints 2!

And then, at last, we hit a break so we jump out of the switch.
if x == 2, then we just hit the case 2, print 2, and break as normal.
Not having a break is called fall through.

ProTip: ALWAYS put a comment in the code where you intend to fall through, like I did above. It will save
other programmers from wondering if you meant to do that.

In fact, this is one of the common places to introduce bugs in C programs: forgetting to put a break in your
case. You gotta do it if you don’t want to just roll into the next case'®.

Earlier I said that switch works with integer types—keep it that way. Don’t use floating point or string types
in there. One loophole-ish thing here is that you can use character types because those are secretly integers
themselves. So this is perfectly acceptable:

char ¢ = 'b';

switch (c) {
case 'a':
printf("It's 'a'!\n");
break;

case 'b':
printf("It's 'b'!\n");
break;

10This was considered such a hazard that the designers of the Go Programming Language made break the default; you have to
explicitly use Go’s fallthrough statement if you want to fall into the next case.
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case 'c':
printf("It's 'c'!\n");
break;

Finally, you can use enums in switch since they are also integer types. But more on that in the enum chapter.



Chapter 4

Functions

“Sir, not in an environment such as this. That’s why I’ve also been programmed for over thirty sec-
ondary functions that—"

—C3PO, before being rudely interrupted, reporting a now-unimpressive number of additional func-
tions, Star Wars script

Very much like other languages you’re used to, C has the concept of functions.

Functions can accept a variety of arguments and return a value. One important thing, though: the arguments
and return value types are predeclared—because that’s how C likes it!

Let’s take a look at a function. This is a function that takes an int as an argument, and returns an int.

#include <stdio.h>

int plus_one(int n) // The "definition"

{

return n + 1;

The int before the plus_one indicates the return type.

The int n indicates that this function takes one int argument, stored in parameter n. A parameter is a special
type of local variable into which the arguments are copied.

I’m going to drive home the point that the arguments are copied into the parameters, here. Lots of things in
C are easier to understand if you know that the parameter is a copy of the argument, not the argument itself.
More on that in a minute.

Continuing the program down into main( ), we can see the call to the function, where we assign the return
value into local variable j:

int main(void)
{
int i = 10, j;
j = plus_one(i); // The "call"

printf("i + 1 is %d\n", j);
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Before I forget, notice that I defined the function before I used it. If I hadn’t done that, the compiler
wouldn’t know about it yet when it compiles main() and it would have given an unknown function
call error. There is a more proper way to do the above code with function prototypes, but we’ll talk
about that later.

Also notice that main() is a function!
It returns an int.
But what’s this void thing? This is a keyword that’s used to indicate that the function accepts no arguments.

You can also return void to indicate that you don’t return a value:

#include <stdio.h>
// This function takes no arguments and returns no value:

void hello(void)

{
printf("Hello, world!\n");
}
int main(void)
{
hello(); // Prints "Hello, world!"
}

4.1 Passing by Value

I’d mentioned earlier that when you pass an argument to a function, a copy of that argument gets made and
stored in the corresponding parameter.

If the argument is a variable, a copy of the value of that variable gets made and stored in the parameter.

More generally, the entire argument expression is evaluated and its value determined. That value is copied
to the parameter.

In any case, the value in the parameter is its own thing. It is independent of whatever values or variables you
used as arguments when you made the function call.

So let’s look at an example here. Study it and see if you can determine the output before running it:

#include <stdio.h>

void increment(int a)

{

a++;

int main(void)

{

int i = 10;
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increment(1i);

printf("i == %d\n", i); // What does this print?

At first glance, it looks like i is 10, and we pass it to the function increment (). There the value gets
incremented, so when we print it, it must be 11, right?

“Get used to disappointment.”
—Dread Pirate Roberts, The Princess Bride
But it’s not 11—it prints 10! How?

It’s all about the fact that the expressions you pass to functions get copied onto their corresponding parameters.
The parameter is a copy, not the original.

So i is 10 out in main(). And we pass it to increment (). The corresponding parameter is called a in that
function.

And the copy happens, as if by assignment. Loosely, a = i. So at that point, a is 10. And out in main(), i
is also 10.

Then we increment a to 11. But we’re not touching i at all! It remains 10.

Finally, the function is complete. All its local variables are discarded (bye, a!) and we return to main(),
where 1 is still 10.

And we print it, getting 10, and we’re done.

This is why in the previous example with the plus_one( ) function, we returned the locally modified value
so that we could see it again in main().

Seems a little bit restrictive, huh? Like you can only get one piece of data back from a function, is what
you’re thinking. There is, however, another way to get data back; C folks call it passing by reference and
that’s a story we’ll tell another time.

But no fancy-schmancy name will distract you from the fact that EVERYTHING you pass to a function WITH-
OUT EXCEPTION is copied into its corresponding parameter, and the function operates on that local copy,
NO MATTER WHAT. Remember that, even when we’re talking about this so-called passing by reference.

4.2 Function Prototypes

So if you recall back in the ice age a few sections ago, I mentioned that you had to define the function before
you used it, otherwise the compiler wouldn’t know about it ahead of time, and would bomb out with an error.

This isn’t quite strictly true. You can notify the compiler in advance that you’ll be using a function of a certain
type that has a certain parameter list. That way the function can be defined anywhere (even in a different
file), as long as the function prototype has been declared before you call that function.

Fortunately, the function prototype is really quite easy. It’s merely a copy of the first line of the function
definition with a semicolon tacked on the end for good measure. For example, this code calls a function that
is defined later, because a prototype has been declared first:

#include <stdio.h>

int foo(void); // This is the prototype!
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int main(void)

{
int i;
// We can call foo() here before it's definition because the
// prototype has already been declared, above!
i = foo();
printf("%d\n", i); // 3490
}

int foo(void) // This is the definition, just like the prototype!

return 3490;

If you don’t declare your function before you use it (either with a prototype or its definition), you’re per-
forming something called an implicit declaration. This was allowed in the first C standard (C89), and that
standard has rules about it, but is no longer allowed today. And there is no legitimate reason to rely on it in
new code.

You might notice something about the sample code we’ve been using... That is, we’ve been using the good old
printf() function without defining it or declaring a prototype! How do we get away with this lawlessness?
We don’t, actually. There is a prototype; it’s in that header file stdio.h that we included with #include,
remember? So we’re still legit, officer!

4.3 Empty Parameter Lists

You might see these from time to time in older code, but you shouldn’t ever code one up in new code. Always
use void to indicate that a function takes no parameters. There’s never® a reason to skip this in modern code.

If you’re good at just remembering to put void in for empty parameter lists in functions and prototypes, you
can skip the rest of this section.

There are two contexts for this:

* Omitting all parameters where the function is defined
* Omitting all parameters in a prototype

Let’s look at a potential function definition first:

void foo() // Should really have a "void® in there

{
printf("Hello, world!\n");

}

While the spec spells out that the behavior in this instance is as-if you’d indicated void (C11 §6.7.6.3914),
the void type is there for a reason. Use it.

But in the case of a function prototype, there is a significant difference between using void and not:

INever say “never”.
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void foo();
void foo(void); // Not the same!

Leaving void out of the prototype indicates to the compiler that there is no additional information about the
parameters to the function. It effectively turns off all that type checking.

With a prototype definitely use void when you have an empty parameter list.
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Chapter 5

Pointers—Cower In Fear!

“How do you get to Carnegie Hall?”
“Practice!”

—20th-century joke of unknown origin

Pointers are one of the most feared things in the C language. In fact, they are the one thing that makes this
language challenging at all. But why?

Because they, quite honestly, can cause electric shocks to come up through the keyboard and physically weld
your arms permanently in place, cursing you to a life at the keyboard in this language from the 70s!

Really? Well, not really. I’m just trying to set you up for success.

Depending on what language you came from, you might already understand the concept of references, where
a variable refers to an object of some type.

This is very much the same, except we have to be more explicit with C about when we’re talking about the
reference or the thing it refers to.

5.1 Memory and Variables

Computer memory holds data of all kinds, right? It’ll hold floats, ints, or whatever you have. To make
memory easy to cope with, each byte of memory is identified by an integer. These integers increase sequen-
tially as you move up through memory'. You can think of it as a bunch of numbered boxes, where each box
holds a byte? of data. Or like a big array where each element holds a byte, if you come from a language with
arrays. The number that represents each box is called its address.

Now, not all data types use just a byte. For instance, an int is often four bytes, as is a float, but it really
depends on the system. You can use the sizeof operator to determine how many bytes of memory a certain
type uses.

// %zu is the format specifier for type size_t
printf("an int uses %zu bytes of memory\n", sizeof(int));

// That prints "4" for me, but can vary by system.

'Typically. I'm sure there are exceptions out there in the dark corridors of computing history.
2A byte is a number made up of no more than 8 binary digits, or bits for short. This means in decimal digits just like grandma used
to use, it can hold an unsigned number between 0 and 255, inclusive.
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Memory Fun Facts: When you have a data type (like your typical int) that uses more than a byte of
memory, the bytes that make up the data are always adjacent to one another in memory. Sometimes
they’re in the order that you expect, and sometimes they’re not’. While C doesn’t guarantee any
particular memory order (it’s platform-dependent), it’s still generally possible to write code in a way
that’s platform-independent where you don’t have to even consider these pesky byte orderings.

9The order that bytes come in is referred to as the endianness of the number. The usual suspects are big-endian (with the
most significant byte first) and little-endian (with the most-significant byte last), or, uncommonly now, mixed-endian (with the
most-significant bytes somewhere else).

So anyway, if we can get on with it and get a drum roll and some foreboding music playing for the definition
of a pointer, a pointer is a variable that holds an address. Imagine the classical score from 2001: A Space
Odyssey at this point. Ba bum ba bum ba bum BAAAAH!

Ok, so maybe a bit overwrought here, yes? There’s not a lot of mystery about pointers. They are the address
of data. Just like an int variable can hold the value 12, a pointer variable can hold the address of data.

This means that all these things mean the same thing, i.e. a number that represents a point in memory:

* Index into memory (if you’re thinking of memory like a big array)
*» Address
* Location

I’'m going to use these interchangeably. And yes, I just threw location in there because you can never have
enough words that mean the same thing.

And a pointer variable holds that address number. Just like a float variable might hold 3.14159.

Imagine you have a bunch of Post-it® notes all numbered in sequence with their address. (The first one is at
index numbered 0, the next at index 1, and so on.)

In addition to the number representing their positions, you can also write another number of your choice on
each. It could be the number of dogs you have. Or the number of moons around Mars...

...Or, it could be the index of another Post-it note!

If you have written the number of dogs you have, that’s just a regular variable. But if you wrote the index of
another Post-it in there, that’s a pointer. It points to the other note!

Another analogy might be with house addresses. You can have a house with certain qualities, yard, metal
roof, solar, etc. Or you could have the address of that house. The address isn’t the same as the house itself.
One’s a full-blown house, and the other is just a few lines of text. But the address of the house is a pointer
to that house. It’s not the house itself, but it tells you where to find it.

And we can do the same thing in the computer with data. You can have a data variable that’s holding some
value. And that value is in memory at some address. And you could have a different pointer variable hold
the address of that data variable.

It’s not the data variable itself, but, like with a house address, it tells us where to find it.

When we have that, we say we have a “pointer to” that data. And we can follow the pointer to access the
data itself.

(Though it doesn’t seem particularly useful yet, this all becomes indispensable when used with function calls.
Bear with me until we get there.)

So if we have an int, say, and we want a pointer to it, what we want is some way to get the address of that
int, right? After all, the pointer just holds the address of the data. What operator do you suppose we’d use
to find the address of the int?

Well, by a shocking surprise that must come as something of a shock to you, gentle reader, we use the
address-of operator (which happens to be an ampersand: “&”)to find the address of the data. Ampersand.
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So for a quick example, we’ll introduce a new format specifier for printf () so you can print a pointer. You
know already how %d prints a decimal integer, yes? Well, %p prints a pointer. Now, this pointer is going to
look like a garbage number (and it might be printed in hexadecimal® instead of decimal), but it is merely the
index into memory the data is stored in. (Or the index into memory that the first byte of data is stored in,
if the data is multi-byte.) In virtually all circumstances, including this one, the actual value of the number
printed is unimportant to you, and I show it here only for demonstration of the address-of operator.

#include <stdio.h>

int main(void)

{
int i = 10;
printf("The value of i is %d\n", 1i);
printf("And its address is %p\n", (void *)&i);
}

The above code contains a cast where we coerce the type of the expression &i to be type void*.
This is to keep the compiler from throwing a warning here. This is all stuff we haven’t covered yet,
so just ignore the (void*) in the code above for now and pretend it’s not there.

On my computer, this prints:

The value of i is 10
And its address is Ox7ffddf7072a4

If you’re curious, that hexadecimal number is 140,727,326,896,068 in decimal (base 10 just like Grandma
used to use). That’s the index into memory where the variable i’s data is stored. It’s the address of i. It’s
the location of i. It’s a pointer to i.

Wait—you have 140 terabytes of RAM? Yes! Don’t you? But I do fib my buns off; of course I
don’t (ca. 2024). Modern computers use a miraculous technology called virtual memory“ that makes
processes think they have the entire memory space of your computer to themselves, regardless of how
much physical RAM backs it up. So even though the address was that huge number, it’s being mapped
to some lower physical memory address by the virtual memory system of my CPU. This particular
computer has 16 GB RAM (again, ca. 2024, but I’'m running Linux, so that’s plenty). Terabytes of
RAM? I’m a teacher, not a dot-com bazillionaire. None of this is anything any of us have to worry
about except the part about me not being phenomenally wealthy.

%https://en.wikipedia.org/wiki/Virtual_memory

It’s a pointer because it lets you know where i is in memory. Like a home address written on a scrap of paper
tells you where you can find a particular house, this number indicates to us where in memory we can find
the value of i. It points to i.

Again, we don’t really care what the address’s exact number is, generally. We just care that it’s a pointer to
i.

5.2 Pointer Types
So... this is all well and good. You can now successfully take the address of a variable and print it on the

screen. There’s a little something for the ol’ resume, right? Here’s where you grab me by the scruff of the
neck and ask politely what the frick pointers are good for.

3That is, base 16 with digits 0, 1, 2, 3, 4, 5,6, 7, 8,9, A, B, C, D, E, and F.
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Excellent question, and we’ll get to that right after these messages from our sponsor.

ACME ROBOTIC HOUSING UNIT CLEANING SERVICES. YOUR HOMESTEAD WILL BE
DRAMATICALLY IMPROVED OR YOU WILL BE TERMINATED. MESSAGE ENDS.

Welcome back to another installment of Beej’s Guide. When we met last we were talking about how to make
use of pointers. Well, what we’re going to do is store a pointer off in a variable so that we can use it later.
You can identify the pointer type because there’s an asterisk (*) before the variable name and after its type:

int main(void)
{
int i; // i's type is "int"
int *p; // p's type is "pointer to an int", or "int-pointer"

Hey, so we have here a variable that is a pointer type, and it can point to other ints. That is, it can hold the
address of other ints. We know it points to ints, since it’s of type int* (read “int-pointer”).

When you do an assignment into a pointer variable, the type of the right hand side of the assignment has to
be the same type as the pointer variable. Fortunately for us, when you take the address-of a variable, the
resultant type is a pointer to that variable type, so assignments like the following are perfect:

int 1i;
int *p; // p is a pointer, but is uninitialized and points to garbage

p =&li; // p is assigned the address of i--p now "points to" i

On the left of the assignment, we have a variable of type pointer-to-int (int*), and on the right side, we
have expression of type pointer-to-int since i is an int (because address-of int gives you a pointer to int).
The address of a thing can be stored in a pointer to that thing.

Get it? I know it still doesn’t quite make much sense since you haven’t seen an actual use for the pointer
variable, but we’re taking small steps here so that no one gets lost. So now, let’s introduce you to the anti-
address-of operator. It’s kind of like what address-of would be like in Bizarro World.

5.3 Dereferencing

A pointer variable can be thought of as referring to another variable by pointing to it. It’s rare you’ll hear
anyone in C land talking about “referring” or “references”, but I bring it up just so that the name of this
operator will make a little more sense.

When you have a pointer to a variable (roughly “a reference to a variable), you can use the original variable
through the pointer by dereferencing the pointer. (You can think of this as “de-pointering” the pointer, but
no one ever says “de-pointering”.)

Back to our analogy, this is vaguely like looking at a home address and then going to that house.

Now, what do I mean by “get access to the original variable”? Well, if you have a variable called i, and you
have a pointer to i called p, you can use the dereferenced pointer p exactly as if it were the original variable
il

You almost have enough knowledge to handle an example. The last tidbit you need to know is actually
this: what is the dereference operator? It’s actually called the indirection operator, because you’re accessing
values indirectly via the pointer. And it is the asterisk, again: *. Now, don’t get this confused with the asterisk
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you used in the pointer declaration, earlier. They are the same character, but they have different meanings in
different contexts*.

Here’s a full-blown example:

#include <stdio.h>
int main(void)
{
int 1i;
int *p; // this is NOT a dereference--this is a type "int*"
p =&i; // p now points to i, p holds address of i
i=10; // i is now 10
*p = 20; // the thing p points to (namely i!) is now 20!!
printf("i is %d\n", 1i); // prints "20"
printf("i is %d\n", *p); // "20"! dereference-p is the same as 1i!
}

Remember that p holds the address of i, as you can see where we did the assignment to p on line 8. What
the indirection operator does is tells the computer to use the object the pointer points to instead of using the
pointer itself. In this way, we have turned *p into an alias of sorts for i.

Great, but why? Why do any of this?

5.4 Passing Pointers as Arguments

Right about now, you’re thinking that you have an awful lot of knowledge about pointers, but absolutely zero
application, right? I mean, what use is *p if you could just simply say i instead?

Well, my friend, the real power of pointers comes into play when you start passing them to functions. Why
is this a big deal? You might recall from before that you could pass all kinds of arguments to functions and
they’d be dutifully copied into parameters, and then you could manipulate local copies of those variables
from within the function, and then you could return a single value.

What if you wanted to bring back more than one single piece of data from the function? I mean, you can
only return one thing, right? What if I answered that question with another question? ...Er, two questions?

What happens when you pass a pointer as an argument to a function? Does a copy of the pointer get put into
its corresponding parameter? You bet your sweet peas it does. Remember how earlier I rambled on and on
about how EVERY SINGLE ARGUMENT gets copied into parameters and the function uses a copy of the
argument? Well, the same is true here. The function will get a copy of the pointer.

But, and this is the clever part: we will have set up the pointer in advance to point at a variable... and then
the function can dereference its copy of the pointer to get back to the original variable! The function can’t
see the variable itself, but it can certainly dereference a pointer to that variable!

This is analogous to writing a home address on a piece of paper, and then copying that onto another piece of
paper. You now have two pointers to that house, and both are equally good at getting you to the house itself.

In the case of a function call. one of the copies is stored in a pointer variable out in the calling scope, and the
other is stored in a pointer variable that is the parameter of the function.

“4That’s not all! It’s used in /*comments*/ and multiplication and in function prototypes with variable length arrays! It’s all the
same *, but the context gives it different meaning.
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Example! Let’s revisit our old increment () function, but this time let’s make it so that it actually increments
the value out in the caller.

#include <stdio.h>

void increment(int *p) // note that it accepts a pointer to an int

p = *p + 1; // add one to the thing p points to
}
int main(void)
{
int i = 10;
int *j = &i; // note the address-of; turns it into a pointer to i
printf("i is %d\n", 1i); // prints "10"
printf("i is also %d\n", *j); // prints "10"
increment(j); // j is an int*--to i
printf("i is %d\n", 1i); // prints "11"!
}

Ok! There are a couple things to see here... not the least of which is that the increment () function takes
an int* as an argument. We pass it an int* in the call by changing the int variable i to an int* using the
address-of operator. (Remember, a pointer holds an address, so we make pointers to variables by running
them through the address-of operator.)

The increment () function gets a copy of the pointer. Both the original pointer j (in main()) and the copy
of that pointer p (the parameter in increment ( )) point to the same address, namely the one holding the value
i. (Again, by analogy, like two pieces of paper with the same home address written on them.) Dereferencing
either will allow you to modify the original variable i! The function can modify a variable in another scope!
Rock on!

The above example is often more concisely written in the call just by using address-of right in the argument
list:

printf("i is %d\n", 1i); // prints "10"
increment(&i);
printf("i is %d\n", i); // prints "11"!

As a general rule, if you want the function to modify the thing that you’re passing in such that you see the
result, you’ll have to pass a pointer to that thing.

5.5 The NULL Pointer

Any pointer variable of any pointer type can be set to a special value called NULL. This indicates that this
pointer doesn’t point to anything.

int *p;

p = NULL;
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Since it doesn’t point to a value, dereferencing it is undefined behavior, and probably will result in a crash:

int *p = NULL;

*p = 12; // CRASH or SOMETHING PROBABLY BAD. BEST AVOIDED.

Despite being called the billion dollar mistake by its creator”, the NULL pointer is a good sentinel value® and
general indicator that a pointer hasn’t yet been initialized.

(Of course, like other variables, the pointer points to garbage unless you explicitly assign it to point to an
address or NULL.)

5.6 A Note on Declaring Pointers

The syntax for declaring a pointer can get a little weird. Let’s look at this example:

int a;
int b;

We can condense that into a single line, right?

int a, b; // Same thing

So a and b are both ints. No problem.

But what about this?

int a;
int *p;

Can we make that into one line? We can. But where does the * go?

The rule is that the * goes in front of any variable that is a pointer type. That is. the * is not part of the int
in this example. it’s a part of variable p.

With that in mind, we can write this:

int a, *p; // Same thing ’

It’s important to note that the following line does not declare two pointers:

int *p, q; // p is a pointer to an int; q is just an int. ’

This can be particularly insidious-looking if the programmer writes this following (valid) line of code which
is functionally identical to the one above.

int* p, q; // p is a pointer to an int; q is just an int. ’

So take a look at this and determine which variables are pointers and which are not:

Shttps://en.wikipedia.org/wiki/Null_pointer#History
Shttps://en.wikipedia.org/wiki/Sentinel_value
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int *a, b, ¢, *d, e, *f, g, h, *i;

I’ll drop the answer in a footnote’.

5.7 sizeof and Pointers

Just a little bit of syntax here that might be confusing and you might see from time to time.

Recall that sizeof operates on the type of the expression.

int *p;

// Prints size of an 'int'
printf("%zu\n", sizeof(int));

// p is type 'int *', so prints size of 'int*'
printf("%zu\n", sizeof p);

// *p is type 'int', so prints size of 'int'
printf("%zu\n", sizeof *p);

You might see code in the wild with that last sizeof in there. Just remember that sizeof is all about the
type of the expression, not the variables in the expression themselves.

"The pointer type variables are a, d, f, and i, because those are the ones with * in front of them.
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Arrays

“Should array indices start at 0 or 1? My compromise of 0.5 was rejected without, I thought, proper
consideration.”

—Stan Kelly-Bootle, computer scientist

Luckily, C has arrays. I mean, I know it’s considered a low-level language® but it does at least have the
concept of arrays built-in. And since a great many languages drew inspiration from C’s syntax, you’re
probably already familiar with using [ and ] for declaring and using arrays.

But C only barely has arrays! As we’ll find out later, arrays are just syntactic sugar in C—they’re actually
all pointers and stuff deep down. Freak out! But for now, let’s just use them as arrays. Phew.

6.1 Easy Example

Let’s just crank out an example:

#include <stdio.h>
int main(void)
{
int i;
float f[4]; // Declare an array of 4 floats
f[0] = 3.14159; // Indexing starts at @, of course.
f[1] = 1.41421;
f[2] = 1.61803;
f[3] = 2.71828;
// Print them all out:
for (1 = 0; 1 < 4; i++) {
printf("%f\n", f[i]);
}
}

IThese days, anyway.
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When you declare an array, you have to give it a size. And the size has to be fixed?.

In the above example, we made an array of 4 floats. The value in the square brackets in the declaration lets
us know that.

Later on in subsequent lines, we access the values in the array, setting them or getting them, again with square
brackets.

Hopefully this looks familiar from languages you already know!

6.2 Getting the Length of an Array

You can’t...ish. C doesn’t record this information®. You have to manage it separately in another variable.

When I say “can’t”, I actually mean there are some circumstances when you can. There is a trick to get the
number of elements in an array in the scope in which an array is declared. But, generally speaking, this won’t
work the way you want if you pass the array to a function®.

Let’s take a look at this trick. The basic idea is that you take the sizeof the array, and then divide that by
the size of each element to get the length. For example, if an int is 4 bytes, and the array is 32 bytes long,

there must be room for 3742 or 8 ints in there.

int x[12]; // 12 ints

printf("%zu\n", sizeof x); // 48 total bytes
printf("%zu\n", sizeof(int)); // 4 bytes per int

printf("%zu\n", sizeof x / sizeof(int)); // 48/4 = 12 ints!

If it’s an array of chars, then sizeof the array is the number of elements, since sizeof(char) is defined
to be 1. For anything else, you have to divide by the size of each element.

But this trick only works in the scope in which the array was defined. If you pass the array to a function, it
doesn’t work. Even if you make it “big” in the function signature:

void foo(int x[12])
{
printf("%zu\n", sizeof x); // 8?! What happened to 48?
printf("%zu\n", sizeof(int)); // 4 bytes per int
printf("%zu\n", sizeof x / sizeof(int)); // 8/4 = 2 ints?? WRONG.
}

This is because when you “pass” arrays to functions, you’re only passing a pointer to the first element, and
that’s what sizeof measures. More on this in the Passing Single Dimensional Arrays to Functions section,
below.

One more thing you can do with sizeof and arrays is get the size of an array of a fixed number of elements
without declaring the array. This is like how you can get the size of an int with sizeof (int).

For example, to see how many bytes would be needed for an array of 48 doubles, you can do this:

2 Again, not really, but variable-length arrays—of which I'm not really a fan—are a story for another time.

3Since arrays are just pointers to the first element of the array under the hood, there’s no additional information recording the length.

“4Because when you pass an array to a function, you’re actually just passing a pointer to the first element of that array, not the “entire”
array.
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sizeof(double [48]);

6.3 Array Initializers

You can initialize an array with constants ahead of time:

#include <stdio.h>
int main(void)
{
int i;
int a[5] = {22, 37, 3490, 18, 95}; // Initialize with these values
for (1 = 0; 1 <5; i++) {
printf("%d\n", a[i]);
}
}

You should never have more items in your initializer than there is room for in the array, or the compiler will
get cranky:

foo.c: In function ‘main’:
f00.c:6:39: warning: excess elements in array initializer
| int a[5] = {22, 37, 3490, 18, 95, 999};

| N~

(o)

f00.c:6:39: note: (near initialization for ‘a’)

But (fun fact!) you can have fewer items in your initializer than there is room for in the array. The remaining
elements in the array will be automatically initialized with zero. This is true in general for all types of array
initializers: if you have an initializer, anything not explicitly set to a value will be set to zero.

int a[5] = {22, 37, 3490},
// 1is the same as:

int a[5] = {22, 37, 3490, 0, 0};

It’s a common shortcut to see this in an initializer when you want to set an entire array to zero:

int a[100] = {0};

Which means, “Make the first element zero, and then automatically make the rest zero, as well.”

You can set specific array elements in the initializer, as well, by specifying an index for the value! When
you do this, C will happily keep initializing subsequent values for you until the initializer runs out, filling
everything else with ©.

To do this, put the index in square brackets with an = after, and then set the value.

Here’s an example where we build an array:

int a[10] = {@, 11, 22, [5]=55, 66, 77};
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Because we listed index 5 as the start for 55, the resulting data in the array is:

011 22 0 0 55 66 77 0 O

You can put simple constant expressions in there, as well.

#define COUNT 5

int a[COUNT] = {[COUNT-3]=3, 2, 1};

which gives us:

060321

Lastly, you can also have C compute the size of the array from the initializer, just by leaving the size off:

int a[3] = {22, 37, 3490},
// 1s the same as:

int a[] = {22, 37, 3490}; // Left the size off!

6.4 Out of Bounds!

C doesn’t stop you from accessing arrays out of bounds. It might not even warn you.

Let’s steal the example from above and keep printing off the end of the array. It only has 5 elements, but let’s
try to print 10 and see what happens:

#include <stdio.h>
int main(void)
{
int 1i;
int a[5] = {22, 37, 3490, 18, 95};
for (i = 0; i < 10; i++) { // BAD NEWS: printing too many elements!
printf("%d\n", a[i]);
}
}

Running it on my computer prints:

22

37

3490

18

95

32765
1847052032
1780534144
-56487472
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21890

Yikes! What’s that? Well, turns out printing off the end of an array results in what C developers call undefined
behavior. We’ll talk more about this beast later, but for now it means, “You’ve done something bad, and
anything could happen during your program run.”

And by anything, I mean typically things like finding zeroes, finding garbage numbers, or crashing. But
really the C spec says in this circumstance the compiler is allowed to emit code that does anything®.

Short version: don’t do anything that causes undefined behavior. Ever®.

6.5 Multidimensional Arrays

You can add as many dimensions as you want to your arrays.

int a[10];
int b[2][7];
int c[4][5][6];

These are stored in memory in row-major order’. This means with a 2D array, the first index listed indicates
the row, and the second the column.

You can also use initializers on multidimensional arrays by nesting them:

#include <stdio.h>

int main(void)

{
int row, col;
int a[2][5] = { // Initialize a 2D array
{0, 1, 2, 3, 4},
{5, 6, 7, 8, 9}
};
for (row = 0; row < 2; row++) {
for (col = 0; col < 5; col++) {
printf("(%d,%d) = %d\n", row, col, a[row][col]);
}
}
}

For output of:

(0,0) = 0
(0,1) = 1
(0,2) = 2

>In the good old MS-DOS days before memory protection was a thing, I was writing some particularly abusive C code that deliber-
ately engaged in all kinds of undefined behavior. But I knew what I was doing, and things were working pretty well. Until I made a
misstep that caused a lockup and, as I found upon reboot, nuked all my BIOS settings. That was fun. (Shout-out to @man for those fun
times.)

6There are a lot of things that cause undefined behavior, not just out-of-bounds array accesses. This is what makes the G language
S0 exciting.

"https://en.wikipedia.org/wiki/Row-_and_column-major_order
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(0,3) =
(0,4) =
(1,0) =
(1,1) =
(1,2) =
(1,3) =
(1,4) =

© 00N O~ W

And you can initialize with explicit indexes:

// Make a 3x3 identity matrix

int a[3][3] = {[e][e]=1, [1][1]=1, [2][2]=1};

which builds a 2D array like this:

o o B
o R o
R o o

6.6 Arrays and Pointers

[Casually] So... I kinda might have mentioned up there that arrays were pointers, deep down? We should
take a shallow dive into that now so that things aren’t completely confusing. Later on, we’ll look at what the
real relationship between arrays and pointers is, but for now I just want to look at passing arrays to functions.

6.6.1 Getting a Pointer to an Array

I want to tell you a secret. Generally speaking, when a C programmer talks about a pointer to an array, they’re
talking about a pointer to the first element of the array®.

So let’s get a pointer to the first element of an array.

#include <stdio.h>
int main(void)
{
int a[5] = {11, 22, 33, 44, 55}%};
int *p;
p = &a[0]; // p points to the array
// Well, to the first element, actually
printf("%d\n", *p); // Prints "11"
}

This is so common to do in C that the language allows us a shorthand:

8This is technically incorrect, as a pointer to an array and a pointer to the first element of an array have different types. But we can
burn that bridge when we get to it.
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p = &a[0]; // p points to the array
// is the same as:

p = a; // p points to the array, but much nicer-looking!

Just referring to the array name in isolation is the same as getting a pointer to the first element of the array!
We’re going to use this extensively in the upcoming examples.

But hold on a second—isn’t p an int*? And *p gives us 11, same as a[0]? Yessss. You're starting to get a
glimpse of how arrays and pointers are related in C.

6.6.2 Passing Single Dimensional Arrays to Functions

Let’s do an example with a single dimensional array. I’'m going to write a couple functions that we can pass
the array to that do different things.

Prepare for some mind-blowing function signatures!

#include <stdio.h>

// Passing as a pointer to the first element
void times2(int *a, int len)
{
for (int 1 = 0; 1 < len; i++)
printf("%d\n", a[i] * 2);

// Same thing, but using array notation
void times3(int a[], int len)
{
for (int 1 = 0; i < len; i++)
printf("%d\n", a[i] * 3);

// Same thing, but using array notation with size
void times4(int a[5], int 1len)

{
for (int i = 0; i < len; i++)
printf("%d\n", a[i] * 4);
}
int main(void)
{
int x[5] = {11, 22, 33, 44, 55};
times2(x, 5);
times3(x, 5);
times4(x, 5);
}

All those methods of listing the array as a parameter in the function are identical.
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void times2(int *a, int len)
void times3(int a[], int len)
void times4(int a[5], int 1len)

In usage by C regulars, the first is the most common, by far.

And, in fact, in the latter situation, the compiler doesn’t even care what number you pass in (other than it has
to be greater than zero”). It doesn’t enforce anything at all.

Now that I’ve said that, the size of the array in the function declaration actually does matter when you’re
passing multidimensional arrays into functions, but let’s come back to that.

6.6.3 Changing Arrays in Functions

We’ve said that arrays are just pointers in disguise. This means that if you pass an array to a function, you’re
likely passing a pointer to the first element in the array.

But if the function has a pointer to the data, it is able to manipulate that data! So changes that a function
makes to an array will be visible back out in the caller.

Here’s an example where we pass a pointer to an array to a function, the function manipulates the values in
that array, and those changes are visible out in the caller.

#include <stdio.h>

void double_array(int *a, int len)

{
// Multiply each element by 2
//
// This doubles the values in x in main() since x and a both point
// to the same array in memory!
for (int i = 0; 1 < len; i++)
a[i] *= 2;
}
int main(void)
{
int x[5] = {1, 2, 3, 4, 5};
double_array(x, 5);
for (int i = 0, i < 5; i++)
printf("%d\n", x[i]), // 2, 4, 6, 8, 10!
}

Even though we passed the array in as parameter a which is type int*, look at how we access it using array
notation with a[1]! Whaaaat. This is totally allowed.

Later when we talk about the equivalence between arrays and pointers, we’ll see how this makes a lot more
sense. For now, it’s enough to know that functions can make changes to arrays that are visible out in the
caller.

9C11 §6.7.6.291 requires it be greater than zero. But you might see code out there with arrays declared of zero length at the end of
structs and GCC is particularly lenient about it unless you compile with -pedantic. This zero-length array was a hackish mechanism
for making variable-length structures. Unfortunately, it’s technically undefined behavior to access such an array even though it basically
worked everywhere. C99 codified a well-defined replacement for it called flexible array members, which we’ll chat about later.
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6.6.4 Passing Multidimensional Arrays to Functions

The story changes a little when we’re talking about multidimensional arrays. C needs to know all the di-
mensions (except the first one) so it has enough information to know where in memory to look to find a
value.

Here’s an example where we’re explicit with all the dimensions:

#include <stdio.h>

void print_2D_array(int a[2][3])

{
for (int row = 0; row < 2; row++) {
for (int col = 0; col < 3; col++)
printf("%d ", a[row][col]);
printf("\n");
}
}
int main(void)
{
int x[2][3] = {
{1, 2, 3},
{4, 5, 6}
}
print_2D_array(Xx);
}

But in this case, these two'® are equivalent:

void print_2D_array(int a[2][3])
void print_2D_array(int a[][3])

The compiler really only needs the second dimension so it can figure out how far in memory to skip for each
increment of the first dimension. In general, it needs to know all the dimensions except the first one.

Also, remember that the compiler does minimal compile-time bounds checking (if you’re lucky), and C does
zero runtime checking of bounds. No seat belts! Don’t crash by accessing array elements out of bounds!

10This is also equivalent: void print_2D_array(int (*a)[3]), but that’s more than I want to get into right now.
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Strings

Finally! Strings! What could be simpler?
Well, turns out strings aren’t actually strings in C. That’s right! They’re pointers! Of course they are!
Much like arrays, strings in C barely exist.

But let’s check it out—it’s not really such a big deal.

7.1 String Literals

Before we start, let’s talk about string literals in C. These are sequences of characters in double quotes (").
(Single quotes enclose characters, and are a different animal entirely.)

Examples:

"Hello, world!\n"
"This is a test."
"When asked if this string had quotes in it, she replied, \"It does.\""

The first one has a newline at the end—quite a common thing to see.

The last one has quotes embedded within it, but you see each is preceded by (we say “escaped by”) a backslash
(\) indicating that a literal quote belongs in the string at this point. This is how the C compiler can tell the
difference between printing a double quote and the double quote at the end of the string.

7.2 String Variables

Now that we know how to make a string literal, let’s assign it to a variable so we can do something with it.

char *s = "Hello, world!";

Check out that type: pointer to a char. The string variable s is actually a pointer to the first character in that
string, namely the H.

And we can print it with the %s (for “string”) format specifier:

char *s = "Hello, world!";
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printf("%s\n", s); // "Hello, world!"

7.3 String Variables as Arrays

Another option is this, nearly equivalent to the above char* usage:

char s[14] = "Hello, world!";

// or, if we were properly lazy and have the compiler
// figure the length for us:

char s[] = "Hello, world!";

This means you can use array notation to access characters in a string. Let’s do exactly that to print all the
characters in a string on the same line:

#include <stdio.h>

int main(void)

{
char s[] = "Hello, world!";
for (int i1 = 0; 1 < 13; i++)

printf("%c", s[i]);

printf("\n");

}

Note that we’re using the format specifier %c to print a single character.

Also, check this out. The program will still work fine if we change the definition of s to be a char* type:

#include <stdio.h>
int main(void)
{
char *s = "Hello, world!"; // char* here
for (int i1 = 0; 1 < 13; i++)
printf("%c", s[i]); // But still use arrays here...?
printf("\n");
}

And we still can use array notation to get the job done when printing it out! This is surprising, but is still
only because we haven’t talked about array/pointer equivalence yet. But this is yet another hint that arrays
and pointers are the same thing, deep down.

7.4 String Initializers

We’ve already seen some examples with initializing string variables with string literals:
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char *s = "Hello, world!";
char t[] = "Hello, again!";

But these two initialization s are subtly different. A string literal, similar to an integer literal, has its memory
automatically managed by the compiler for you! With an integer, i.e. a fixed size piece of data, the compiler
can pretty easily manage it. But strings are a variable-byte beast which the compiler tames by tossing into a
chunk of memory, and giving you a pointer to it.

This form points to wherever that string was placed. Typically, that place is in a land faraway from the rest
of your program’s memory — read-only memory — for reasons related to performance & safety.

char *s = "Hello, world!";

So, if you try to mutate that string with this:

char *s = "Hello, world!";

s[@] = 'z'; // BAD NEWS: tried to mutate a string literal!

The behavior is undefined. Probably, depending on your system, a crash will result.

But declaring it as an array is different. The compiler doesn’t stow those bytes in another part of town, they’re
right down the street. This one is a mutable copy of the string — one we can change at will:

char t[] = "Hello, again!"; // t is an array copy of the string
t[@] = 'z'; // No problem

printf("%s\n", t); // "zello, again!"

So remember: if you have a pointer to a string literal, don’t try to change it! And if you use a string in double
quotes to initialize an array, that’s not actually a string literal.

7.5 Getting String Length

You can’t, since C doesn’t track it for you. And when I say “can’t”, I actually mean “can”!. There’s a function

in <string.h> called strlen() that can be used to compute the length of any string in bytes?.

#include <stdio.h>
#include <string.h>

int main(void)
{

char *s = "Hello, world!";

printf("The string is %zu bytes long.\n", strlen(s));

The strlen() function returns type size_t, which is an integer type so you can use it for integer math. We
print size_t with %zu.

IThough it is true that C doesn’t track the length of strings.
2If you’re using the basic character set or an 8-bit character set, you’re used to one character being one byte. This isn’t true in all
character encodings, though.
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The above program prints:

The string is 13 bytes long.

Great! So it is possible to get the string length!

But... if C doesn’t track the length of the string anywhere, how does it know how long the string is?

7.6 String Termination

C does strings a little differently than many programming languages, and in fact differently than almost every
modern programming language.

When you’re making a new language, you have basically two options for storing a string in memory:
1. Store the bytes of the string along with a number indicating the length of the string.
2. Store the bytes of the string, and mark the end of the string with a special byte called the terminator.

If you want strings longer than 255 characters, option 1 requires at least two bytes to store the length. Whereas
option 2 only requires one byte to terminate the string. So a bit of savings there.

Of course, these days it seems ridiculous to worry about saving a byte (or 3—lots of languages will happily
let you have strings that are 4 gigabytes in length). But back in the day, it was a bigger deal.

So C took approach #2. In C, a “string” is defined by two basic characteristics:

* A pointer to the first character in the string.
+ A zero-valued byte (or NUL character’) somewhere in memory after the pointer that indicates the end
of the string.

A NUL character can be written in C code as \0, though you don’t often have to do this.

When you include a string in double quotes in your code, the NUL character is automatically, implicitly
included.

char *s = "Hello!"; // Actually "Hello!\0" behind the scenes

So with this in mind, let’s write our own strlen() function that counts chars in a string until it finds a NUL.

The procedure is to look down the string for a single NUL character, counting as we go*:

int my_strlen(char *s)
{
int count = 0;
while (s[count] != '\@') // Single quotes for single char
count++;
return count;
}

And that’s basically how the built-in strlen() gets the job done.

3This is different than the NULL pointer, and I’ll abbreviate it NUL when talking about the character versus NULL for the pointer.
4Later we’ll learn a neater way to do it with pointer arithmetic.
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7.7 Copying a String

You can’t copy a string through the assignment operator (=). All that does is make a copy of the pointer to
the first character... so you end up with two pointers to the same string:

#include <stdio.h>
int main(void)
{
char s[] = "Hello, world!";
char *t;
// This makes a copy of the pointer, not a copy of the string!
t =5,
// We modify t
tfe] = 'z';
// But printing s shows the modification!
// Because t and s point to the same string!
printf("%s\n", s), // "zello, world!"
}

If you want to make a copy of a string, you have to copy it a byte at a time—this means that you’re going
to take the individual bytes of the string from one place in memory and duplicate them somewhere else in
memory. This is made easier with the strcpy/() function®.

Before you copy the string, make sure you have room to copy it into, i.e. the destination array that’s going
to hold the characters needs to be at least as long as the string you’re copying.

#include <stdio.h>
#include <string.h>
int main(void)
{
char s[] = "Hello, world!";
char t[100]; // Each char is one byte, so plenty of room
// This makes a copy of the string!
strcpy(t, s);
// We modify t
t[fe] = 'z%;
// And s remains unaffected because it's a different string
printf("%s\n", s); // "Hello, world!"
// But t has been changed
printf("%s\n", t); // "zello, world!"
}

SThere’s a safer function called strncpy () that you should probably use instead, but we’ll get to that later.
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Notice with strepy/( ), the destination pointer is the first argument, and the source pointer is the second. A
mnemonic I use to remember this is that it’s the order you would have put t and s if an assignment = worked
for strings, with the source on the right and the destination on the left.
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Structs

In C, we have something called a struct, which is a user-definable type that holds multiple pieces of data,
potentially of different types.

It’s a convenient way to bundle multiple variables into a single one. This can be beneficial for passing
variables to functions (so you just have to pass one instead of many), and useful for organizing data and
making code more readable.

If you’ve come from another language, you might be familiar with the idea of classes and objects. These
don’t exist in C, natively'. You can think of a struct as a class with only data members, and no methods.

8.1 Declaring a Struct

You can declare a struct in your code like so:

struct car {
char *name;
float price;
int speed;

3

This is often done at the global scope outside any functions so that the struct is globally available.

When you do this, you’re making a new type. The full type name is struct car. (Not just car—that won’t
work.)

There aren’t any variables of that type yet, but we can declare some:

struct car saturn; // Variable "saturn" of type "struct car"

And now we have an uninitialized variable saturn? of type struct car.
We should initialize it! But how do we set the values of those individual fields?

Like in many other languages that stole it from C, we’re going to use the dot operator (.) to access the
individual fields.

1 Although in C individual items in memory like ints are referred to as “objects”, they’re not objects in an object-oriented program-
ming sense.

2The Saturn was a popular brand of economy car in the United States until it was put out of business by the 2008 crash, sadly so to
us fans.
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saturn.name = "Saturn SL/2";
saturn.price 15999.99;
saturn.speed = 175;

printf("Name: %s\n", saturn.name);
printf("Price (USD): %f\n", saturn.price);
printf("Top Speed (km): %d\n", saturn.speed);

There on the first lines, we set the values in the struct car, and then in the next bit, we print those values
out.

8.2 Struct Initializers

That example in the previous section was a little unwieldy. There must be a better way to initialize that
struct variable!

You can do it with an initializer by putting values in for the fields in the order they appear in the struct
when you define the variable. (This won’t work after the variable has been defined—it has to happen in the
definition).

struct car {
char *name;
float price;
int speed;

}i

// Now with an initializer! Same field order as in the struct declaration:
struct car saturn = {"Saturn SL/2", 16000.99, 175};

printf("Name: %s\n", saturn.name);
printf("Price: %f\n", saturn.price);
printf("Top Speed: %d km\n", saturn.speed);

The fact that the fields in the initializer need to be in the same order is a little freaky. If someone changes the
order in struct car, it could break all the other code!

We can be more specific with our initializers:

struct car saturn = {.speed=175, .name="Saturn SL/2"};

Now it’s independent of the order in the struct declaration. Which is safer code, for sure.

Similar to array initializers, any missing field designators are initialized to zero (in this case, that would be
.price, which I’ve omitted).

8.3 Passing Structs to Functions

You can do a couple things to pass a struct to a function.

1. Pass the struct.
2. Pass a pointer to the struct.

Recall that when you pass something to a function, a copy of that thing gets made for the function to operate
on, whether it’s a copy of a pointer, an int, a struct, or anything.
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There are basically two cases when you’d want to pass a pointer to the struct:

1. You need the function to be able to make changes to the struct that was passed in, and have those
changes show in the caller.

2. The struct is somewhat large and it’s more expensive to copy that onto the stack than it is to just
copy a pointer>.

For those two reasons, it’s far more common to pass a pointer to a struct to a function, though its by no
means illegal to pass the struct itself.

Let’s try passing in a pointer, making a function that will allow you to set the . price field of the struct car:

#include <stdio.h>

struct car {
char *name;
float price;

int speed;

i

int main(void)

{
struct car saturn = {.speed=175, .name="Saturn SL/2"},;
// Pass a pointer to this struct car, along with a new,
// more realistic, price:
set_price(&saturn, 799.99);
printf("Price: %f\n", saturn.price);

}

You should be able to come up with the function signature for set_price() just by looking at the types of
the arguments we have there.

saturn is a struct car, so &saturn must be the address of the struct car, AKA a pointer to a
struct car, namely a struct car*.

And 799.99 is a float.

So the function declaration must look like this:

void set_price(struct car *c, float new_price)

We just need to write the body. One attempt might be:

void set_price(struct car *c, float new_price) {
c.price = new_price; // ERROR!!

That won’t work because the dot operator only works on structs... it doesn’t work on pointers to structs.

Ok, so we can dereference the variable ¢ to de-pointer it to get to the struct itself. Dereferencing a
struct car* results in the struct car that the pointer points to, which we should be able to use the dot
operator on:

3A pointer is likely 8 bytes on a 64-bit system.
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void set_price(struct car *c, float new_price) {
(*c).price = new_price; // Works, but is ugly and non-idiomatic :(

And that works! But it’s a little clunky to type all those parens and the asterisk. C has some syntactic sugar
called the arrow operator that helps with that.

8.4 The Arrow Operator

The arrow operator helps refer to fields in pointers to structs.

void set_price(struct car *c, float new_price) {
// (*c).price = new_price; // Works, but non-idiomatic :(
//
// The line above is 100% equivalent to the one below:

c->price = new_price; // That's the one!

So when accessing fields, when do we use dot and when do we use arrow?

+ If you have a struct, use dot (.).
« If you have a pointer to a struct, use arrow (->).

8.5 Copying and Returning structs

Here’s an easy one for you!

Just assign from one to the other!

struct car a, b;

b =a; // Copy the struct

And returning a struct (as opposed to a pointer to one) from a function also makes a similar copy to the
receiving variable.

»4

This is not a “deep copy””. All fields are copied as-is, including pointers to things.

8.6 Comparing structs

There’s only one safe way to do it: compare each field one at a time.

You might think you could use memcmp( )°, but that doesn’t handle the case of the possible padding bytes
that might be in there.

If you clear the struct to zero first with memset (), then it might work, though there could be weird
elements that might not compare as you expect’.

4A deep copy follows pointer in the struct and copies the data they point to, as well. A shallow copy just copies the pointers, but
not the things they point to. C doesn’t come with any built-in deep copy functionality.

Shttps://beej.us/guide/bgclr/html/split/stringref. html#man-stremp

Shttps://beej.us/guide/bgclr/html/split/stringref. html#man-memset

"https://stackoverflow.com/questions/141720/how-do-you-compare-structs-for-equality-in-c
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Chapter 9

File Input/Output

We’ve already seen some examples of I/O with printf() for doing I/O at the console.

But we’ll push those concepts a little farther this chapter.

9.1 The FILE* Data Type

When we do any kind of I/O in C, we do so through a piece of data that you get in the form of a FILE* type.
This FILE* holds all the information needed to communicate with the I/O subsystem about which file you
have open, where you are in the file, and so on.

The spec refers to these as streams, i.e. a stream of data from a file or from any source. I’m going to use
“files” and “streams” interchangeably, but really you should think of a “file” as a special case of a “stream”.
There are other ways to stream data into a program than just reading from a file.

We’ll see in a moment how to go from having a filename to getting an open FILE* for it, but first I want to
mention three streams that are already open for you and ready for use.

FILE* name Description

stdin Standard Input, generally the keyboard by default
stdout Standard Output, generally the screen by default
stderr Standard Error, generally the screen by default, as well

We’ve actually been using these implicitly already, it turns out. For example, these two calls are the same:

printf("Hello, world!\n");
fprintf(stdout, "Hello, world!\n"); // printf to a file

But more on that later.

Also you’ll notice that both stdout and stderr go to the screen. While this seems at first either like an
oversight or redundancy, it actually isn’t. Typical operating systems allow you to redirect the output of either
of those into different files, and it can be convenient to be able to separate error messages from regular
non-error output.

For example, in a POSIX shell (like sh, ksh, bash, zsh, etc.) on a Unix-like system, we could run a program
and send just the non-error (stdout) output to one file, and all the error (stderr) output to another file.
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./foo > output.txt 2> errors.txt # This command is Unix-specific

For this reason, you should send serious error messages to stderr instead of stdout.

More on how to do that later.

9.2 Reading Text Files

Streams are largely categorized two different ways: text and binary.

Text streams are allowed to do significant translation of the data, most notably translations of newlines to
their different representations!. Text files are logically a sequence of lines separated by newlines. To be
portable, your input data should always end with a newline.

But the general rule is that if you’re able to edit the file in a regular text editor, it’s a text file. Otherwise, it’s
binary. More on binary later.

So let’s get to work—how do we open a file for reading, and pull data out of it?

Let’s create a file called hello. txt that has just this in it:

Hello, world!

And let’s write a program to open the file, read a character out of it, and then close the file when we’re done.
That’s the game plan!

#include <stdio.h>

int main(void)

{
FILE *fp; // Variable to represent open file
fp = fopen("hello.txt", "r"); // Open file for reading
int ¢ = fgetc(fp); // Read a single character
printf("%c\n", c); // Print char to stdout
fclose(fp); // Close the file when done

}

See how when we opened the file with fopen (), it returned the FILE* to us so we could use it later.

(I’'m leaving it out for brevity, but fopen() will return NULL if something goes wrong, like file-not-found,
so you should really error check it!)

Also notice the "r" that we passed in—this means “open a text stream for reading”. (There are various
strings we can pass to fopen () with additional meaning, like writing, or appending, and so on.)

After that, we used the fgetc() function to get a character from the stream. You might be wondering why
I’ve made c an int instead of a char—hold that thought!

Finally, we close the stream when we’re done with it. All streams are automatically closed when the program
exits, but it’s good form and good housekeeping to explicitly close any files yourself when done with them.

'We used to have three different newlines in broad effect: Carriage Return (CR, used on old Macs), Linefeed (LF, used on Unix
systems), and Carriage Return/Linefeed (CRLF, used on Windows systems). Thankfully the introduction of OS X, being Unix-based,
reduced this number to two.
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The FILE* keeps track of our position in the file. So subsequent calls to fgetc () would get the next character
in the file, and then the next, until the end.

But that sounds like a pain. Let’s see if we can make it easier.

9.3 End of File: EOF

There is a special character defined as a macro: EOF. This is what fgetc () will return when the end of the
file has been reached and you’ve attempted to read another character.

How about I share that Fun Fact™, now. Turns out EOF is the reason why fgetc() and functions like it
return an int instead of a char. EOF isn’t a character proper, and its value likely falls outside the range of
char. Since fgetc () needs to be able to return any byte and EOF, it needs to be a wider type that can hold
more values. so int it is. But unless you’re comparing the returned value against EOF, you can know, deep
down, it’s a char.

All right! Back to reality! We can use this to read the whole file in a loop.

#include <stdio.h>

int main(void)

{
FILE *fp;
int c;
fp = fopen("hello.txt", "r");
while ((c = fgetc(fp)) !'= EOF)

printf("%c", c);

fclose(fp);

}

(If line 10 is too weird, just break it down starting with the innermost-nested parens. The first thing we do
is assign the result of fgetc() into c, and then we compare that against EOF. We’ve just crammed it into a
single line. This might look hard to read, but study it—it’s idiomatic C.)

And running this, we see:

Hello, world!

But still, we’re operating a character at a time, and lots of text files make more sense at the line level. Let’s
switch to that.

9.3.1 Reading a Line at a Time

So how can we get an entire line at once? fgets() to the rescue! For arguments, it takes a pointer to a
char buffer to hold bytes, a maximum number of bytes to read, and a FILE* to read from. It returns NULL
on end-of-file or error. fgets() is even nice enough to NUL-terminate the string when its done?.

Let’s do a similar loop as before, except let’s have a multiline file and read it in a line at a time.

Here’s a file quote. txt:

2If the buffer’s not big enough to read in an entire line, it’ll just stop reading mid-line, and the next call to fgets() will continue
reading the rest of the line.
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A wise man can learn more from
a foolish question than a fool
can learn from a wise answer.

--Bruce Lee

And here’s some code that reads that file a line at a time and prints out a line number before each one:

{

#include <stdio.h>

int main(void)

FILE *fp;
char s[1024]; // Big enough for any line this program will encounter
int linecount = 0;

fp = fopen("quote.txt", "r");

while (fgets(s, sizeof s, fp) != NULL)
printf("%d: %s", ++linecount, s);

fclose(fp);

Which gives the output:

: A wise man can learn more from

1
2
3:
4:

a foolish question than a fool
can learn from a wise answer.
--Bruce Lee

9.4 Formatted Input

You know how you can get formatted output with printf () (and, thus, fprintf() like we’ll see, below)?

You can do the same thing with fscanf().

Before we start, you should be advised that using scanf ()-style functions can be hazardous with
untrusted input. If you don’t specify field widths with your %s, you could overflow the buffer. Worse,
invalid numeric conversion result in undefined behavior. The safe thing to do with untrusted input is
to use %s with a field width, then use functions like strtol() or strtod() to do the conversions.

Let’s have a file with a series of data records in it. In this case, whales, with name, length in meters, and
weight in tonnes. whales. txt:

blue 29.9 173
right 20.7 135
gray 14.9 41
humpback 16.0 30

Yes, we could read these with fgets() and then parse the string with sscanf () (and in that’s more resilient
against corrupted files), but in this case, let’s just use fscanf () and pull it in directly.

The fscanf () function skips leading whitespace when reading, and returns EOF on end-of-file or error.
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#include <stdio.h>

int main(void)

{
FILE *fp;
char name[1024]; // Big enough for any line this program will encounter
float length;
int mass;
fp = fopen("whales.txt", "r");
while (fscanf(fp, "%s %f %d", name, &length, &mass) != EOF)
printf("%s whale, %d tonnes, %.1f meters\n", name, mass, length);
fclose(fp);
}

Which gives the result:

blue whale, 173 tonnes, 29.9 meters
right whale, 135 tonnes, 20.7 meters
gray whale, 41 tonnes, 14.9 meters
humpback whale, 30 tonnes, 16.0 meters

9.5 Writing Text Files

In much the same way we can use fgetc(), fgets(), and fscanf() to read text streams, we can use
fputc(), fputs(), and fprintf() to write text streams.

To do so, we have to fopen() the file in write mode by passing "w" as the second argument. Opening an
existing file in "w" mode will instantly truncate that file to 0 bytes for a full overwrite.

We’ll put together a simple program that outputs a file output . txt using a variety of output functions.

#include <stdio.h>

int main(void)
{
FILE *fp;
int x = 32;

fp = fopen("output.txt", "w");
fputc('B', fp);

fputc('\n', fp); // newline
fprintf(fp, "x = %d\n", Xx);
fputs("Hello, world!\n", fp);

fclose(fp);

And this produces a file, output. txt, with these contents:
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B
X = 32
Hello, world!

Fun fact: since stdout is a file, you could replace line 8 with:

fp = stdout;

and the program would have outputted to the console instead of to a file. Try it!

9.6 Binary File I/O

So far we’ve just been talking text files. But there’s that other beast we mentioned early on called binary
files, or binary streams.

These work very similarly to text files, except the I/0 subsystem doesn’t perform any translations on the data
like it might with a text file. With binary files, you get a raw stream of bytes, and that’s all.

The big difference in opening the file is that you have to add a "b" to the mode. That is, to read a binary file,
open it in "rb" mode. To write a file, open it in "wb" mode.

Because it’s streams of bytes, and streams of bytes can contain NUL characters, and the NUL character is
the end-of-string marker in C, it’s rare that people use the fprintf()-and-friends functions to operate on
binary files.

Instead the most common functions are fread() and fwrite(). The functions read and write a specified
number of bytes to the stream.

To demo, we’ll write a couple programs. One will write a sequence of byte values to disk all at once. And
the second program will read a byte at a time and print them out®.

#include <stdio.h>
int main(void)
{
FILE *fp;
unsigned char bytes[6] = {5, 37, 0, 88, 255, 12};
fp = fopen("output.bin", "wb"); // wb mode for "write binary"!
// In the call to fwrite, the arguments are:
//
// * Pointer to data to write
// * Size of each "piece" of data
// * Count of each "piece" of data
// * FILE*
fwrite(bytes, sizeof(char), 6, fp);
fclose(fp);
}

3Normally the second program would read all the bytes at once, and then print them out in a loop. That would be more efficient.
But we’re going for demo value, here.



9.6. Binary File I/O 67

Those two middle arguments to fwrite() are pretty odd. But basically what we want to tell the function is,
“We have items that are this big, and we want to write that many of them.” This makes it convenient if you
have a record of a fixed length, and you have a bunch of them in an array. You can just tell it the size of one
record and how many to write.

In the example above, we tell it each record is the size of a char, and we have 6 of them.

Running the program gives us a file output.bin, but opening it in a text editor doesn’t show anything
friendly! It’s binary data—not text. And random binary data I just made up, at that!

If I run it through a hex dump* program, we can see the output as bytes:

05 25 00 58 ff Oc

Many Unix systems ship with a program called hexdump to do this. You can use it like this with the
-C (“canonical”) switch to get nice output:

$ hexdump -C output.bin
00000000 05 25 00 58 ff OC | .%.X. .|

The 00000000 is the offset within the file that this line of output starts on. The 65 25 00 58 ff @c are
the byte values (and this would be longer (up to 16 bytes per line) if there were more bytes in the file).
And on the right between the pipe (|) symbols is hexdump’s best attempt to print out the characters
that correspond to those bytes. It prints a period if the character is unprintable. In this case, since
we’re just printing random binary data, this part of the output is just garbage. But if we’d printed an
ASCII string to the file, we’d see that in there.

And those values in hex do match up to the values (in decimal) that we wrote out.

But now let’s try to read them back in with a different program. This one will open the file for binary reading
("rb" mode) and will read the bytes one at a time in a loop.

fread() has the neat feature where it returns the number of bytes read, or ® on EOF. So we can loop until
we see that, printing numbers as we go.

#include <stdio.h>
int main(void)
{
FILE *fp;
unsigned char c;
fp = fopen("output.bin", "rb"); // rb for "read binary"!
while (fread(&c, sizeof(char), 1, fp) > 0)
printf("%d\n", c);
fclose(fp);
}

And, running it, we see our original numbers!

“https://en.wikipedia.org/wiki/Hex_dump
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5
37
0
88
255
12

‘Woo hoo!

9.6.1 struct and Number Caveats

Aswe saw in the structs section, the compiler is free to add padding to a struct as it sees fit. And different
compilers might do this differently. And the same compiler on different architectures could do it differently.
And the same compiler on the same architectures could do it differently.

What I’m getting at is this: it’s not portable to just fwrite() an entire struct out to a file when you don’t
know where the padding will end up.

How do we fix this? Hold that thought—we’ll look at some ways to do this after looking at another related
problem.

Numbers!
Turns out all architectures don’t represent numbers in memory the same way.

Let’s look at a simple fwrite() of a 2-byte number. We’ll write it in hex so each byte is clear. The most
significant byte will have the value 0x12 and the least significant will have the value 8x34.

unsigned short v = 0x1234; // Two bytes, 0x12 and 0x34

fwrite(&v, sizeof v, 1, fp);

What ends up in the stream?
Well, it seems like it should be ©x12 followed by 0x34, right?

But if I run this on my machine and hex dump the result, I get:

34 12

They’re reversed! What gives?

This has something to do with what’s called the endianess® of the architecture. Some write the most signifi-
cant bytes first, and some the least significant bytes first.

This means that if you write a multibyte number out straight from memory, you can’t do it in a portable way®.

A similar problem exists with floating point. Most systems use the same format for their floating point
numbers, but some do not. No guarantees!

So... how can we fix all these problems with numbers and structs to get our data written in a portable way?

The summary is to serialize the data, which is a general term that means to take all the data and write it out
in a format that you control, that is well-known, and programmable to work the same way on all platforms.

As you might imagine, this is a solved problem. There are a bunch of serialization libraries you can take
advantage of, such as Google’s protocol buffers’, out there and ready to use. They will take care of all the

Shttps://en.wikipedia.org/wiki/Endianess
6And this is why I used individual bytes in my fwrite() and fread() examples, above, shrewdly.
"https://en.wikipedia.org/wiki/Protocol_buffers
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gritty details for you, and even will allow data from your C programs to interoperate with other languages
that support the same serialization methods.

Do yourself and everyone a favor! Serialize your binary data when you write it to a stream! This will keep
things nice and portable, even if you transfer data files from one architecture to another.
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Chapter 10

typedef: Making New Types

Well, not so much making new types as getting new names for existing types. Sounds kinda pointless on the
surface, but we can really use this to make our code cleaner.

10.1 typedef in Theory

Basically, you take an existing type and you make an alias for it with typedef.

Like this:

typedef int antelope; // Make "antelope" an alias for "int"

antelope x = 10; // Type "antelope" is the same as type "int"

You can take any existing type and do it. You can even make a number of types with a comma list:

typedef int antelope, bagel, mushroom; // These are all "int"

That’s really useful, right? That you can type mushroom instead of int? You must be super excited about
this feature!

OK, Professor Sarcasm—we’ll get to some more common applications of this in a moment.

10.1.1 Scoping
typedef follows regular scoping rules.

For this reason, it’s quite common to find typedef at file scope (“global”) so that all functions can use the
new types at will.

10.2 typedef in Practice

So renaming int to something else isn’t that exciting. Let’s see where typedef commonly makes an ap-
pearance.
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10.2.1 typedef and structs

Sometimes a struct will be typedef’d to a new name so you don’t have to type the word struct over and
over.

struct animal {
char *name;
int leg_count, speed;

}

// original name new name
// | |

// v v

/1 EEETSTITET | 1----1

typedef struct animal animal;

struct animal y; // This works
animal z; // This also works because "animal" is an alias

Personally, I don’t care for this practice. I like the clarity the code has when you add the word struct to the
type; programmers know what they’re getting. But it’s really common so I’'m including it here.

Now I want to run the exact same example in a way that you might commonly see. We’re going to put the
struct animal in the typedef. You can mash it all together like this:

// original name
// |
// \Y
// [----------- |
typedef struct animal {
char *name;
int leg_count, speed;
} animal; // <-- new name

struct animal y; // This works
animal z; // This also works because "animal" is an alias

That’s exactly the same as the previous example, just more concise.

But that’s not all! There’s another common shortcut that you might see in code using what are called anony-
mous structures'. Tt turns out you don’t actually need to name the structure in a variety of places, and with
typedef is one of them.

Let’s do the same example with an anonymous structure:

// Anonymous struct! It has no name!
// |
// \Y
// [----1
typedef struct {
char *name;
int leg_count, speed;
} animal; // <-- new name

Iwe’1l talk more about these later.
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//struct animal y; // ERROR: this no longer works--no such struct!
animal z; // This works because "animal" is an alias

As another example, we might find something like this:

typedef struct {
int x, y;
} point;
point p = {.x=20, .y=40};

printf("%d, %d\n", p.x, p.y); // 20, 40

10.2.2 typedef and Other Types

It’s not that using typedef with a simple type like int is completely useless... it helps you abstract the types
to make it easier to change them later.

For example, if you have float all over your code in 100 zillion places, it’s going to be painful to change
them all to double if you find you have to do that later for some reason.

But if you prepared a little with:

typedef float app_float;
// and

app_float f1, f2, f3;

Then if later you want to change to another type, like long double, you just need to change the typedef:

// voila!
/7 [EREEEEEES |
typedef long double app_float;

// and no need to change this line:

app_float f1, f2, f3; // Now these are all long doubles

10.2.3 typedef and Pointers

You can make a type that is a pointer.

typedef int *intptr;

int a = 10;
intptr x = &a; // "intptr" is type "int*"

I really don’t like this practice. It hides the fact that x is a pointer type because you don’t see a * in the
declaration.

IMHQO, it’s better to explicitly show that you’re declaring a pointer type so that other devs can clearly see it
and don’t mistake x for having a non-pointer type.
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But at last count, say, 832,007 people had a different opinion.

10.2.4 typedef and Capitalization

I’ve seen all kinds of capitalization on typedef.

typedef struct {
int x, vy;
} my_point; // lower snake case

typedef struct {
int x, y;
} MyPoint; // CamelCase

typedef struct {
int x, y;
} Mypoint; // Leading uppercase

typedef struct {
int x, y;
} MY_POINT; // UPPER SNAKE CASE

The C11 specification doesn’t dictate one way or another, and shows examples in all uppercase and all low-
ercase.

K&R2 uses leading uppercase predominantly, but show some examples in uppercase and snake case (with
_t).

If you have a style guide in use, stick with it. If you don’t, grab one and stick with it.
10.3 Arrays and typedef

The syntax is a little weird, and this is rarely seen in my experience, but you can typedef an array of some
number of items.

// Make type five_ints an array of 5 ints
typedef int five_ints[5];

five_ints x = {11, 22, 33, 44, 55};

I don’t like it because it hides the array nature of the variable, but it’s possible to do.
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Pointers I1I: Arithmetic

Time to get more into it with a number of new pointer topics! If you’re not up to speed with pointers, check
out the first section in the guide on the matter.

11.1 Pointer Arithmetic

Turns out you can do math on pointers, notably addition and subtraction.
But what does it mean when you do that?

In short, if you have a pointer to a type, adding one to the pointer moves to the next item of that type directly
after it in memory.

It’s important to remember that as we move pointers around and look at different places in memory, we
need to make sure that we’re always pointing to a valid place in memory before we dereference. If we’re off
in the weeds and we try to see what’s there, the behavior is undefined and a crash is a common result.

This is a little chicken-and-eggy with Array/Pointer Equivalence, below, but we’re going to give it a shot,
anyway.

11.1.1 Adding to Pointers

First, let’s take an array of numbers.

int a[5] = {11, 22, 33, 44, 55};

Then let’s get a pointer to the first element in that array:

int a[5] = {11, 22, 33, 44, 55};

int *p = &a[0@]; // Or "int *p = a;" works just as well

Then let’s print the value there by dereferencing the pointer:

printf("%d\n", *p); // Prints 11

Now let’s use pointer arithmetic to print the next element in the array, the one at index 1:
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printf("%d\n", *(p + 1)); // Prints 22!!

What happened there? C knows that p is a pointer to an int. So it knows the sizeof an int! and it knows
to skip that many bytes to get to the next int after the first one!

In fact, the prior example could be written these two equivalent ways:

printf("%d\n", *p); // Prints 11
printf("%d\n", *(p + 0)); // Prints 11

because adding 0 to a pointer results in the same pointer.

Let’s think of the upshot here. We can iterate over elements of an array this way instead of using an array:

int a[5] = {11, 22, 33, 44, 55};
int *p = &a[0@]; // Or "int *p = a;" works just as well
for (int 1 = 0; 1 < 5; i++) {

printf("%d\n", *(p + 1)); // Same as p[i]!
}

And that works the same as if we used array notation! Oooo! Getting closer to that array/pointer equivalence
thing! More on this later in this chapter.

But what’s actually happening, here? How does it work?
Remember from early on that memory is like a big array, where a byte is stored at each array index?
And the array index into memory has a few names:

* Index into memory
* Location
» Address
» Pointer!

So a pointer is an index into memory, somewhere.

For a random example, say that a number 3490 was stored at address (“index”) 23,237,489,202. If we have
an int pointer to that 3490, that value of that pointer is 23,237,489,202... because the pointer is the memory
address. Different words for the same thing.

And now let’s say we have another number, 4096, stored right after the 3490 at address 23,237,489,210 (8
higher than the 3490 because each int in this example is 8 bytes long).

If we add 1 to that pointer, it actually jumps ahead sizeof(int) bytes to the next int. It knows to jump
that far ahead because it’s an int pointer. If it were a float pointer, it’d jump sizeof(float) bytes ahead
to get to the next float!

So you can look at the next int, by adding 1 to the pointer, the one after that by adding 2 to the pointer, and
S0 on.

11.1.2 Changing Pointers

We saw how we could add an integer to a pointer in the previous section. This time, let’s modify the pointer,
itself.

Recall that the sizeof operator tells you the size in bytes of an object in memory.
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You can just add (or subtract) integer values directly to (or from) any pointer!

Let’s do that example again, except with a couple changes. First, I’'m going to add a 999 to the end of our
numbers to act as a sentinel value. This will let us know where the end of the data is.

int a[] = {11, 22, 33, 44, 55, 999}; // Add 999 here as a sentinel

int *p = &a[0@]; // p points to the 11

And we also have p pointing to the element at index 0 of a, namely 11, just like before.

Now—Iet’s start incrementing p so that it points at subsequent elements of the array. We’ll do this until p
points to the 999; that is, we’ll do it until *p == 999:

while (*p '= 999) { // While the thing p points to isn't 999
printf("%d\n", *p); // Print it
p++; // Move p to point to the next int!

}

Pretty crazy, right?

When we give it a run, first p points to 11. Then we increment p, and it points to 22, and then again, it points
to 33. And so on, until it points to 999 and we quit.

11.1.3 Subtracting Pointers

You can subtract a value from a pointer to get to earlier address, as well, just like we were adding to them
before.

But we can also subtract two pointers to find the difference between them, e.g. we can calculate how many
ints there are between two int*s. The catch is that this only works within a single array’—if the pointers
point to anything else, you get undefined behavior.

Remember how strings are char*s in C? Let’s see if we can use this to write another variant of strlen()
to compute the length of a string that utilizes pointer subtraction.

The idea is that if we have a pointer to the beginning of the string, we can find a pointer to the end of the
string by scanning ahead for the NUL character.

And if we have a pointer to the beginning of the string, and we computed the pointer to the end of the string,
we can just subtract the two pointers to come up with the length!

#include <stdio.h>

int my_strlen(char *s)

{

// Start scanning from the beginning of the string
char *p = s;

// Scan until we find the NUL character
while (*p !'= '\0@"')
p++;

// Return the difference in pointers

20r string, which is really an array of chars. Somewhat peculiarly, you can also have a pointer that references one past the end of
the array without a problem and still do math on it. You just can’t dereference it when it’s out there.
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return p - s;

}
int main(void)
{
printf("%d\n", my_strlen("Hello, world!")); // Prints "13"
}

Remember that you can only use pointer subtraction between two pointers that point to the same array!

11.2 Array/Pointer Equivalence

We’re finally ready to talk about this! We’ve seen plenty of examples of places where we’ve intermixed array
notation, but let’s give out the fundamental formula of array/pointer equivalence:

a[b] == *(a + b)

Study that! Those are equivalent and can be used interchangeably!

I’ve oversimplified a bit, because in my above example a and b can both be expressions, and we might want
a few more parentheses to force order of operations in case the expressions are complex.

The spec is specific, as always, declaring (in C11 §6.5.2.192):
| E1[E2] is identical to (*((E1)+(E2)))

but that’s a little harder to grok. Just make sure you include parentheses if the expressions are complicated
so all your math happens in the right order.

This means we can decide if we’re going to use array or pointer notation for any array or pointer (assuming
it points to an element of an array).

Let’s use an array and pointer with both array and pointer notation:

#include <stdio.h>
int main(void)
{
int a[] = {11, 22, 33, 44, 55};
int *p = a; // p points to the first element of a, 11

// Print all elements of the array a variety of ways:

for (int i = 0; i < 5; i++)
printf("%d\n", a[i]); // Array notation with a

for (int 1 = 0; 1 < 5; i++)
printf("%d\n", p[i]); // Array notation with p

for (int i = 0, i < 5; i++)
printf("%d\n", *(a + i)); // Pointer notation with a

for (int 1 = 0; 1 < 5; i++)
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printf("%d\n", *(p + 1)); // Pointer notation with p

for (int 1 = 0; i < 5; i++)
printf("%d\n", *(p++)); // Moving pointer p
//printf("%d\n", *(at+)); // Moving array variable a--ERROR!

So you can see that in general, if you have an array variable, you can use pointer or array notion to access
elements. Same with a pointer variable.

The one big difference is that you can modify a pointer to point to a different address, but you can’t do that
with an array variable.

11.2.1 Array/Pointer Equivalence in Function Calls
This is where you’ll encounter this concept the most, for sure.

If you have a function that takes a pointer argument, e.g.:

int my_strlen(char *s)

this means you can pass either an array or a pointer to this function and have it work!

char s[] = "Antelopes";
char *t = "Wombats";

printf("%d\n", my_strlen(s)); // Works!
printf("%d\n", my_strlen(t)); // Works, too!

And it’s also why these two function signatures are equivalent:

int my_strlen(char *s) // Works!
int my_strlen(char s[]) // Works, too!

11.3 void Pointers

You’ve already seen the void keyword used with functions, but this is an entirely separate, unrelated animal.
Sometimes it’s useful to have a pointer to a thing that you don’t know the type of.

I know. Bear with me just a second.

There are basically two use cases for this.

1. A function is going to operate on something byte-by-byte. For example, memcpy () copies bytes of
memory from one pointer to another, but those pointers can point to any type. memcpy () takes advan-
tage of the fact that if you iterate through char*s, you’re iterating through the bytes of an object no
matter what type the object is. More on this in the Multibyte Values subsection.

2. Another function is calling a function you passed to it (a callback), and it’s passing you data. You know
the type of the data, but the function calling you doesn’t. So it passes you void*s—’cause it doesn’t
know the type—and you convert those to the type you need. The built-in gsort ()® and bsearch()*
use this technique.

3https://beej.us/guide/bgclr/html/split/stdlib.html#man-gsort
“https://beej.us/guide/bgclr/html/split/stdlib. html#man-bsearch


https://beej.us/guide/bgclr/html/split/stdlib.html#man-qsort
https://beej.us/guide/bgclr/html/split/stdlib.html#man-bsearch
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Let’s look at an example, the built-in memcpy () function:

void *memcpy(void *s1, void *s2, size_t n);

This function copies n bytes of memory starting from address s2 into the memory starting at address s1.
But look! s1 and s2 are void*s! Why? What does it mean? Let’s run more examples to see.

For instance, we could copy a string with memcpy () (though strcpy() is more appropriate for strings):

#include <stdio.h>
#include <string.h>

int main(void)

{
char s[] = "Goats!";
char t[100];
memcpy(t, s, 7); // Copy 7 bytes--including the NUL terminator!
printf("%s\n", t); // "Goats!"
}

Or we can copy some ints:

#include <stdio.h>
#include <string.h>

int main(void)

{
int a[] = {11, 22, 33};
int b[3];
memcpy(b, a, 3 * sizeof(int)); // Copy 3 ints of data
printf("%d\n", b[1]); // 22
}

That one’s a little wild—you see what we did there with memcpy ()? We copied the data from a to b, but we
had to specify how many bytes to copy, and an int is more than one byte.

OK, then—how many bytes does an int take? Answer: depends on the system. But we can tell how many
bytes any type takes with the sizeof operator.

So there’s the answer: an int takes sizeof (int) bytes of memory to store.

And if we have 3 of them in our array, like we did in that example, the entire space used for the 3 ints must
be 3 * sizeof (int).

(In the string example, earlier, it would have been more technically accurate to copy 7 * sizeof(char)
bytes. But chars are always one byte large, by definition, so that just devolves into 7 * 1.)

We could even copy a float or a struct with memcpy()! (Though this is abusive—we should just use =
for that):
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struct antelope my_antelope;
struct antelope my_clone_antelope;

//

memcpy (&my_clone_antelope, &my_antelope, sizeof my_antelope);

Look at how versatile memcpy () is! If you have a pointer to a source and a pointer to a destination, and you
have the number of bytes you want to copy, you can copy any type of data.

Imagine if we didn’t have void*. We’d have to write specialized memcpy () functions for each type:

memcpy_int(int *a, int *b, int count);

memcpy_float(float *a, float *b, int count);

memcpy_double(double *a, double *b, int count);

memcpy_char(char *a, char *b, int count);

memcpy_unsigned_char (unsigned char *a, unsigned char *b, int count);

// etc... blech!

Much better to just use void* and have one function that can do it all.

That’s the power of void*. You can write functions that don’t care about the type and is still able to do things
with it.

But with great power comes great responsibility. Maybe not that great in this case, but there are some limits.

1. You cannot do pointer arithmetic on a void*.

2. You cannot dereference a void*.

3. You cannot use the arrow operator on a void*, since it’s also a dereference.

4. You cannot use array notation on a void*, since it’s also a dereference, as well.

And if you think about it, these rules make sense. All those operations rely on knowing the sizeof the type
of data pointed to, and with void*, we don’t know the size of the data being pointed to—it could be anything!

But wait—if you can’t dereference a void* what good can it ever do you?

Like with memcpy (), it helps you write generic functions that can handle multiple types of data. But the
secret is that, deep down, you convert the void* to another type before you use it!

And conversion is easy: you can just assign into a variable of the desired type®.

char a = 'X'; // A single char

void *p
char *q

&a; // p points to the 'X'
p; // q also points to the 'X'

printf("%c\n", *p); // ERROR--cannot dereference void*!
printf("%c\n", *q),; // Prints "X"

Let’s write our own memcpy () to try this out. We can copy bytes (chars), and we know the number of bytes
because it’s passed in.

SBecause remember that array notation is just a dereference and some pointer math, and you can’t dereference a void*!
6You can also cast the void* to another type, but we haven’t gotten to casts yet.
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void *my_memcpy(void *dest, void *src, int byte_count)
{
// Convert void*s to char*s
char *s = src, *d = dest;
// Now that we have char*s, we can dereference and copy them
while (byte_count--) {
*d++ = *s++;
}
// Most of these functions return the destination, just in case
// that's useful to the caller.
return dest;
}

Right there at the beginning, we copy the void*s into char*s so that we can use them as char*s. It’s as
easy as that.

Then some fun in a while loop, where we decrement byte_count until it becomes false (0). Remember
that with post-decrement, the value of the expression is computed (for while to use) and then the variable is
decremented.

And some fun in the copy, where we assign *d = *s to copy the byte, but we do it with post-increment so
that both d and s move to the next byte after the assignment is made.

Lastly, most memory and string functions return a copy of a pointer to the destination string just in case the
caller wants to use it.

Now that we’ve done that, I just want to quickly point out that we can use this technique to iterate over the
bytes of any object in C, floats, structs, or anything!

Let’s run one more real-world example with the built-in gsort () routine that can sort anything thanks to the
magic of void*s.

(In the following example, you can ignore the word const, which we haven’t covered yet.)

#include <stdio.h>
#include <stdlib.h>

// The type of structure we're going to sort
struct animal {

char *name;

int leg_count;

Y

// This is a comparison function called by qgsort() to help it determine
// what exactly to sort by. We'll use it to sort an array of struct
// animals by leg_count.
int compar(const void *eleml, const void *elem2)
{
// We know we're sorting struct animals, so let's make both
// arguments pointers to struct animals
const struct animal *animall = elemi;
const struct animal *animal2 = elem2;
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// Return <0 =0 or >0 depending on whatever we want to sort by.
// Let's sort ascending by leg_count, so we'll return the difference
// in the leg_counts
if (animall->leg_count > animal2->leg_count)
return 1,
if (animall->1leg_count < animal2->1leg_count)
return -1;
return 0;
}
int main(void)
{
// Let's build an array of 4 struct animals with different
// characteristics. This array is out of order by leg_count, but
// we'll sort it in a second.
struct animal a[4] = {
{.name="Dog", .leg_count=4},
{.name="Monkey", .leg_count=2},
{.name="Antelope", .leg_count=4},
{.name="Snake", .leg_count=0}
1
// Call qsort() to sort the array. gsort() needs to be told exactly
// what to sort this data by, and we'll do that inside the compar()
// function.
//
// This call is saying: qgsort array a, which has 4 elements, and
// each element is sizeof(struct animal) bytes big, and this is the
// function that will compare any two elements.
gsort(a, 4, sizeof(struct animal), compar);
// Print them all out
for (int i = 0; i < 4; i++) {
printf("%d: %s\n", a[i].leg_count, a[i].name);
}
}

Aslong as you give gsort () a function that can compare two items that you have in your array to be sorted, it
can sort anything. And it does this without needing to have the types of the items hardcoded in there anywhere.
gsort() just rearranges blocks of bytes based on the results of the compar () function you passed in.
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Chapter 12

Manual Memory Allocation

This is one of the big areas where C likely diverges from languages you already know: manual memory
management.

Other languages uses reference counting, garbage collection, or other means to determine when to allocate
new memory for some data—and when to deallocate it when no variables refer to it.

And that’s nice. It’s nice to be able to not worry about it, to just drop all the references to an item and trust
that at some point the memory associated with it will be freed.

But C’s not like that, entirely.

Of course, in C, some variables are automatically allocated and deallocated when they come into scope and
leave scope. We call these automatic variables. They’re your average run-of-the-mill block scope “local”
variables. No problem.

But what if you want something to persist longer than a particular block? This is where manual memory
management comes into play.

You can tell C explicitly to allocate for you a certain number of bytes that you can use as you please. And
these bytes will remain allocated until you explicitly free that memory'.

It’s important to free the memory you’re done with! If you don’t, we call that a memory leak and your process
will continue to reserve that memory until it exits.

If you manually allocated it, you have to manually free it when you’re done with it.

So how do we do this? We’re going to learn a couple new functions, and make use of the sizeof operator
to help us learn how many bytes to allocate.

In common C parlance, devs say that automatic local variables are allocated “on the stack”, and manually-
allocated memory is “on the heap”. The spec doesn’t talk about either of those things, but all C devs will
know what you’re talking about if you bring them up.

All functions we’re going to learn in this chapter can be found in <stdlib.h>.

12.1 Allocating and Deallocating, malloc() and free()

The malloc() function accepts a number of bytes to allocate, and returns a void pointer to that block of
newly-allocated memory.

1Or until the program exits, in which case all the memory allocated by it is freed. Asterisk: some systems allow you to allocate
memory that persists after a program exits, but it’s system dependent, out of scope for this guide, and you’ll certainly never do it on
accident.
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Since it’s a void*, you can assign it into whatever pointer type you want... normally this will correspond in
some way to the number of bytes you’re allocating.

So... how many bytes should I allocate? We can use sizeof to help with that. If we want to allocate enough
room for a single int, we can use sizeof(int) and pass that to malloc().

After we’re done with some allocated memory, we can call free() to indicate we’re done with that memory
and it can be used for something else. As an argument, you pass the same pointer you got from malloc()
(or a copy of it). It’s undefined behavior to use a memory region after you free() it.

Let’s try. We’ll allocate enough memory for an int, and then store something there, and then print it.

// Allocate space for a single int (sizeof(int) bytes-worth):
int *p = malloc(sizeof(int));

*p = 12; // Store something there

printf("%d\n", *p); // Print it: 12

free(p); // All done with that memory

//*p = 3490; // ERROR: undefined behavior! Use after free()!

Now, in that contrived example, there’s really no benefit to it. We could have just used an automatic int
and it would have worked. But we’ll see how the ability to allocate memory this way has its advantages,
especially with more complex data structures.

One more thing you’ll commonly see takes advantage of the fact that sizeof can give you the size of the
result type of any constant expression. So you could put a variable name in there, too, and use that. Here’s
an example of that, just like the previous one:

int *p = malloc(sizeof *p); // *p is an int, so same as sizeof(int)

12.2 Error Checking

All the allocation functions return a pointer to the newly-allocated stretch of memory, or NULL if the memory
cannot be allocated for some reason.

Some OSes like Linux can be configured in such a way that malloc() never returns NULL, even if you’re
out of memory. But despite this, you should always code it up with protections in mind.

int *x;
x = malloc(sizeof(int) * 10);
if (x == NULL) {

printf("Error allocating 10 ints\n");
// do something here to handle it

Here’s a common pattern that you’ll see, where we do the assignment and the condition on the same line:



12.3. Allocating Space for an Array 87

int *x;

if ((x = malloc(sizeof(int) * 10)) == NULL) {
printf("Error allocating 10 ints\n");
// do something here to handle it

12.3 Allocating Space for an Array

We’ve seen how to allocate space for a single thing; now what about for a bunch of them in an array?
In C, an array is a bunch of the same thing back-to-back in a contiguous stretch of memory.

We can allocate a contiguous stretch of memory—we’ve seen how to do that. If we wanted 3490 bytes of
memory, we could just ask for it:

char *p = malloc(3490); // Voila

And—indeed!—that’s an array of 3490 chars (AKA a string!) since each char is 1 byte. In other words,
sizeof (char) is 1.

Note: there’s no initialization done on the newly-allocated memory—it’s full of garbage. Clear it with
memset () if you want to, or see calloc (), below.

But we can just multiply the size of the thing we want by the number of elements we want, and then access
them using either pointer or array notation. Example!

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
// Allocate space for 10 ints
int *p = malloc(sizeof(int) * 10);

// Assign them values 0-45:
for (int i = 0; 1 < 10; i++)
p[i] = 1 * 5;

// Print all values 0, 5, 10, 15,
for (int i = 0; i < 10; i++)
printf("%d\n", p[i]);

., 40, 45

// Free the space
free(p);

The key’s in that malloc() line. If we know each int takes sizeof (int) bytes to hold it, and we know
we want 10 of them, we can just allocate exactly that many bytes with:

sizeof(int) * 10

And this trick works for every type. Just pass it to sizeof and multiply by the size of the array.
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12.4 An Alternative: calloc()

This is another allocation function that works similarly to malloc (), with two key differences:

+ Instead of a single argument, you pass the size of one element, and the number of elements you wish
to allocate. It’s like it’s made for allocating arrays.
* It clears the memory to zero.

You still use free( ) to deallocate memory obtained through calloc().

Here’s a comparison of calloc() and malloc().

// Allocate space for 10 ints with calloc(), initialized to O:
int *p = calloc(10, sizeof(int));

// Allocate space for 10 ints with malloc(), initialized to 0:
int *g = malloc(10 * sizeof(int));
memset(q, 0, 10 * sizeof(int)); // set to 0

Again, the result is the same for both except malloc() doesn’t zero the memory by default.

12.5 Changing Allocated Size with realloc()

If you’ve already allocated 10 ints, but later you decide you need 20, what can you do?

One option is to allocate some new space, and then memcpy() the memory over... but it turns out that
sometimes you don’t need to move anything. And there’s one function that’s just smart enough to do the
right thing in all the right circumstances: realloc().

It takes a pointer to some previously-allocted memory (by malloc() or calloc()) and a new size for the
memory region to be.

It then grows or shrinks that memory, and returns a pointer to it. Sometimes it might return the same pointer
(if the data didn’t have to be copied elsewhere), or it might return a different one (if the data did have to be
copied).

Be sure when you call realloc( ), you specify the number of bytes to allocate, and not just the number of
array elements! That is:

num_floats *= 2;

np realloc(p, num_floats); // WRONG: need bytes, not number of elements!

np = realloc(p, num_floats * sizeof(float)); // Better!

Let’s allocate an array of 20 floats, and then change our mind and make it an array of 40.

We’re going to assign the return value of realloc() into another pointer just to make sure it’s not NULL. If
it’s not, then we can reassign it into our original pointer. (If we just assigned the return value directly into the
original pointer, we’d lose that pointer if the function returned NULL and we’d have no way to get it back.)

#include <stdio.h>
#include <stdlib.h>

int main(void)

{
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// Allocate space for 20 floats
float *p = malloc(sizeof *p * 20); // sizeof *p same as sizeof(float)

// Assign them fractional values 0.0-1.0:
for (int i = 0; i < 20; i++)
p[i] =1 / 20.0;

// But wait! Let's actually make this an array of 40 elements
float *new_p = realloc(p, sizeof *p * 40);

// Check to see if we successfully reallocated
if (new_p == NULL) {

printf("Error reallocing\n");

return 1;

}

// If we did, we can just reassign p
p = new_p;

// And assign the new elements values in the range 1.0-2.0
for (int i = 20; i < 40; i++)
p[i] = 1.0 + (1 - 20) / 20.0;

// Print all values 0.0-2.0 in the 40 elements:
for (int i = @; i < 40; i++)
printf("%f\n", p[i]);

// Free the space
free(p);

Notice in there how we took the return value from realloc () and reassigned it into the same pointer variable
p that we passed in. That’s pretty common to do.

Also if line 7 is looking weird, with that sizeof *p in there, remember that sizeof works on the size of the
type of the expression. And the type of *p is float, so that line is equivalent to sizeof(float).

Finally, it might be a little weird that I don’t have a free(new_p) in there anywhere, even though that was
the pointer returned by realloc(). The reason is that we copy new_p into p on line 23, so they both have
the same value; that is, they both point to the same chunk of memory, and there’s only the one chunk. So
when I free(), I could actually free either of them for the same effect.

12.5.1 Reading in Lines of Arbitrary Length
I want to demonstrate two things with this full-blown example.

1. Use of realloc() to grow a buffer as we read in more data.
2. Use of realloc() to shrink the buffer down to the perfect size after we’ve completed the read.

What we see here is a loop that calls fgetc() over and over to append to a buffer until we see that the last
character is a newline.

Once it finds the newline, it shrinks the buffer to just the right size and returns it.
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#include <stdio.h>
#include <stdlib.h>

//
//
//
//
//
//
//
//
//

Read a line of arbitrary size from a file

Returns a pointer to the line.
Returns NULL on EOF or error.

It's up to the caller to free() this pointer when done with it.

Note that this strips the newline from the result. If you need
it in there, probably best to switch this to a do-while.

char *readline(FILE *fp)

{

int offset = 0; // Index next char goes in the buffer
int bufsize = 4; // Preferably power of 2 initial size
char *buf; // The buffer

int c; // The character we've read in

buf = malloc(bufsize); // Allocate initial buffer

if (buf == NULL) // Error check
return NULL;

// Main loop--read until newline or EOF
while (c = fgetc(fp), c != '\n' && c !'= EOF) {

// Check if we're out of room in the buffer accounting

// for the extra byte for the NUL terminator

if (offset == bufsize - 1) { // -1 for the NUL terminator
bufsize *= 2; // 2x the space

char *new_buf = realloc(buf, bufsize);
if (new_buf == NULL) {

free(buf); // On error, free and bail
return NULL;

buf = new_buf; // Successful realloc

buf[offset++] = ¢; // Add the byte onto the buffer

// We hit newline or EOF...

// If at EOF and we read no bytes, free the buffer and
// return NULL to indicate we're at EOF:
if (c == EOF && offset == 0) {

free(buf);

return NULL,
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}

// Shrink to fit
if (offset < bufsize - 1) { // If we're short of the end
char *new_buf = realloc(buf, offset + 1); // +1 for NUL terminator

// If successful, point buf to new_buf;
// otherwise we'll just leave buf where it is
if (new_buf != NULL)

buf = new_buf;

3

// Add the NUL terminator
buf[offset] = '\0';

return buf;

}
int main(void)
{
FILE *fp = fopen("foo.txt", "r");
char *1line;
while ((line = readline(fp)) != NULL) {
printf("%s\n", line);
free(line);
}
fclose(fp);
}
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When growing memory like this, it’s common (though hardly a law) to double the space needed each step

just to minimize the number of realloc()s that occur.

Finally you might note that readline() returns a pointer to a malloc()d buffer. As such, it’s up to the

caller to explicitly free() that memory when it’s done with it.

12.5.2 realloc() with NULL

Trivia time! These two lines are equivalent:

char *p = malloc(3490);
char *p = realloc(NULL, 3490);

That could be convenient if you have some kind of allocation loop and you don’t want to special-case the

first malloc().

int *p = NULL;
int length = 0;

while (!done) {
// Allocate 10 more ints:
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length += 10;
p = realloc(p, sizeof *p * length);

// Do amazing things
/7 ...

In that example, we didn’t need an initial malloc() since p was NULL to start.

12.6 Aligned Allocations

You probably aren’t going to need to use this.

And I don’t want to get too far off in the weeds talking about it right now, but there’s this thing called memory
alignment, which has to do with the memory address (pointer value) being a multiple of a certain number.

For example, a system might require that 16-bit values begin on memory addresses that are multiples of 2.
Or that 64-bit values begin on memory addresses that are multiples of 2, 4, or 8, for example. It depends on
the CPU.

Some systems require this kind of alignment for fast memory access, or some even for memory access at all.

Now, if youusemalloc( ), calloc(),orrealloc(), Cwill give you a chunk of memory that’s well-aligned
for any value at all, even structs. Works in all cases.

But there might be times that you know that some data can be aligned at a smaller boundary, or must be aligned
at a larger one for some reason. I imagine this is more common with embedded systems programming.

In those cases, you can specify an alignment with aligned_alloc().

The alignment is an integer power of two greater than zero, so 2, 4, 8, 16, etc. and you give that to
aligned_alloc( ) before the number of bytes you’re interested in.

The other restriction is that the number of bytes you allocate needs to be a multiple of the alignment. But
this might be changing. See C Defect Report 460?

Let’s do an example, allocating on a 64-byte boundary:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main(void)
{
// Allocate 256 bytes aligned on a 64-byte boundary
char *p = aligned_alloc(64, 256); // 256 == 64 * 4
// Copy a string in there and print it
strcpy(p, "Hello, world!");
printf("%s\n", p);
// Free the space
free(p);
}

Zhttp://www.open-std.org/jtc1/sc22/wgl4/www/docs/summary.htm#dr_460
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I want to throw a note here about realloc() and aligned_alloc(). realloc() doesn’t have any align-
ment guarantees, so if you need to get some aligned reallocated space, you’ll have to do it the hard way with

memcpy ().

Here’s a non-standard aligned_realloc() function, if you need it:

void *aligned_realloc(void *ptr, size_t old_size, size_t alignment, size_t size)
{

char *new_ptr = aligned_alloc(alignment, size);

if (new_ptr == NULL)
return NULL;

size_t copy_size = old_size < size? old_size: size; // get min

if (ptr != NULL)
memcpy(new_ptr, ptr, copy_size);

free(ptr);

return new_ptr;

Note that it always copies data, taking time, while real realloc() will avoid that if it can. So this is hardly
efficient. Avoid needing to reallocate custom-aligned data.
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Chapter 13

Scope

Scope is all about what variables are visible in what contexts.

13.1 Block Scope

This is the scope of almost all the variables devs define. It includes what other languages might call “function

scope”, i.e. variables that are declared inside functions.

The basic rule is that if you’ve declared a variable in a block delimited by squirrelly braces, the scope of that

variable is that block.

If there’s a block inside a block, then variables declared in the inner block are local to that block, and cannot

be seen in the outer scope.

Once a variable’s scope ends, that variable can no longer be referenced, and you can consider its value to be

gone into the great bit bucket! in the sky.

An example with nested scope:

#include <stdio.h>
int main(void)
{
int a = 12; // Local to outer block, but visible in inner block
if (a == 12) {
int b = 99; // Local to inner block, not visible in outer block
printf("%d %d\n", a, b); // OK: "12 99"
}
printf("%d\n", a); // OK, we're still in a's scope
printf("%d\n", b); // ILLEGAL, out of b's scope
}

Thttps://en.wikipedia.org/wiki/Bit_bucket
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13.1.1 Where To Define Variables

Another fun fact is that you can define variables anywhere in the block, within reason—they have the scope
of that block, but cannot be used before they are defined.

#include <stdio.h>
int main(void)
{
int i = 0Q;
printf("%d\n", 1i); // OK: "o"
//printf("%d\n", j); // ILLEGAL--can't use j before it's defined
int j = 5;
printf("%d %d\n", i, j); // OK: "@ 5"
}

Historically, C required all the variables be defined before any code in the block, but this is no longer the
case in the C99 standard.

13.1.2 Variable Hiding

If you have a variable named the same thing at an inner scope as one at an outer scope, the one at the inner
scope takes precedence as long as you’re running in the inner scope. That is, it hides the one at outer scope
for the duration of its lifetime.

#include <stdio.h>
int main(void)
{
int i = 10;
{
int i = 20;
printf("%d\n", i); // Inner scope i, 20 (outer i is hidden)
}
printf("%d\n", i); // Outer scope i, 10
}

You might have noticed in that example that I just threw a block in there at line 7, not so much as a for or
if statement to kick it off! This is perfectly legal. Sometimes a dev will want to group a bunch of local
variables together for a quick computation and will do this, but it’s rare to see.

13.2 File Scope

If you define a variable outside of a block, that variable has file scope. It’s visible in all functions in the file
that come after it, and shared between them. (An exception is if a block defines a variable of the same name,
it would hide the one at file scope.)
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This is closest to what you would consider to be “global” scope in another language.

For example:

#include <stdio.h>
int shared = 10; // File scope! Visible to the whole file after this!

void funcil(void)

{
shared += 100; // Now shared holds 110
}
void func2(void)
{
printf("%d\n", shared); // Prints "110"
}
int main(void)
{
funci();
func2();
}

Note that if shared were declared at the bottom of the file, it wouldn’t compile. It has to be declared before
any functions use it.

There are ways to further modify items at file scope, namely with static and extern, but we’ll talk more about
those later.

13.3 for-loop Scope

I really don’t know what to call this, as C11 §6.8.5.391 doesn’t give it a proper name. We’ve done it already
a few times in this guide, as well. It’s when you declare a variable inside the first clause of a for-loop:

for (int 1 = 0; i < 10; i++)
printf("%d\n", 1i);

printf("%d\n", i); // ILLEGAL--i is only in scope for the for-loop

In that example, i’s lifetime begins the moment it is defined, and continues for the duration of the loop.
If the loop body is enclosed in a block, the variables defined in the for-loop are visible from that inner scope.

Unless, of course, that inner scope hides them. This crazy example prints 999 five times:

#include <stdio.h>

int main(void)
{
for (int i = 0; i < 5; i++) {
int 1 = 999; // Hides the i in the for-loop scope
printf("%d\n", 1i);
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13.4 A Note on Function Scope

The C spec does refer to function scope, but it’s used exclusively with labels, something we haven’t discussed
yet. More on that another day.
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Types II: Way More Types!

We’re used to char, int, and float types, but it’s now time to take that stuff to the next level and see what
else we have out there in the types department!

14.1 Signed and Unsigned Integers

So far we’ve used int as a signed type, that is, a value that can be either negative or positive. But C also has
specific unsigned integer types that can only hold positive numbers.

These types are prefaced by the keyword unsigned.

int a; // signed

signed int a; // signed

signed a; // signed, "shorthand" for "int" or "signed int", rare
unsigned int b; // unsigned

unsigned c; // unsigned, shorthand for "unsigned int"

Why? Why would you decide you only wanted to hold positive numbers?
Answer: you can get larger numbers in an unsigned variable than you can in a signed ones.
But why is that?

You can think of integers being represented by a certain number of bits'. On my computer, an int is repre-
sented by 64 bits.

And each permutation of bits that are either 1 or 0 represents a number. We can decide how to divvy up these
numbers.

With signed numbers, we use (roughly) half the permutations to represent negative numbers, and the other
half to represent positive numbers.

With unsigned, we use all the permutations to represent positive numbers.

On my computer with 64-bit ints using two’s complement? to represent unsigned numbers, I have the fol-
lowing limits on integer range:

l«Bit” is short for binary digit. Binary is just another way of representing numbers. Instead of digits 0-9 like we’re used to, it’s digits
0-1.
Zhttps://en.wikipedia.org/wiki/Tw0%27s_complement
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Type Minimum Maximum
int -9,223,372,036,854,775,808 9,223,372,036,854,775,807
unsigned int © 18,446,744,073,709,551,615

Notice that the largest positive unsigned int is approximately twice as large as the largest positive int. So
you can get some flexibility there.

14.2 Character Types

Remember char? The type we can use to hold a single character?

char c = 'B';

printf("%c\n", c); // "B"

I have a shocker for you: it’s actually an integer.

char ¢ = 'B';

// Change this from %c to %d:
printf("%d\n", c); // 66 (!!)

Deep down, char is just a small int, namely an integer that uses just a single byte of space, limiting its range
to...

Here the C spec gets just a little funky. It assures us that a char is a single byte, i.e. sizeof(char) ==
But then in C11 §3.693 it goes out of its way to say:

| A byte is composed of a contiguous sequence of bits, the number of which is implementation-defined.

Wait—what? Some of you might be used to the notion that a byte is 8 bits, right? I mean, that’s what it
is, right? And the answer is, “Almost certainly.”® But C is an old language, and machines back in the day
had, shall we say, a more relaxed opinion over how many bits were in a byte. And through the years, C has
retained this flexibility.

But assuming your bytes in C are 8 bits, like they are for virtually all machines in the world that you’ll ever
see, the range of a char is...

—So before I can tell you, it turns out that chars might be signed or unsigned depending on your compiler.
Unless you explicitly specify.

In many cases, just having char is fine because you don’t care about the sign of the data. But if you need
signed or unsigned chars, you must be specific:

char a; // Could be signed or unsigned
signed char b; // Definitely signed
unsigned char c; // Definitely unsigned

OK, now, finally, we can figure out the range of numbers if we assume that a char is 8 bits and your system
uses the virtually universal two’s complement representation for signed and unsigned®.

3The industry term for a sequence of exactly, indisputably 8 bits is an octet.

“In general, if you have an n bit two’s complement number, the signed range is —2™ ! to 27~ — 1. And the unsigned range is 0
to 2" — 1.
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So, assuming those constraints, we can finally figure our ranges:

char type Minimum Maximum
signed char -128 127
unsigned char 0 255

And the ranges for char are implementation-defined.
Let me get this straight. char is actually a number, so can we do math on it?

Yup! Just remember to keep things in the range of a char!

#include <stdio.h>
int main(void)
{
char a = 10, b = 20;

printf("%d\n", a + b); // 30!

What about those constant characters in single quotes, like 'B'? How does that have a numeric value?
The spec is also hand-wavey here, since C isn’t designed to run on a single type of underlying system.

But let’s just assume for the moment that your character set is based on ASCII® for at least the first 128
characters. In that case, the character constant will be converted to a char whose value is the same as the
ASCII value of the character.

That was a mouthful. Let’s just have an example:

#include <stdio.h>

int main(void)

{
char a = 10;
char b = 'B'; // ASCII value 66
printf("%d\n", a + b); // 76!

}

This depends on your execution environment and the character set used®. One of the most popular character
sets today is Unicode’ (which is a superset of ASCII), so for your basic 0-9, A-Z, a-z and punctuation, you’ll
almost certainly get the ASCII values out of them.

14.3 More Integer Types: short, long, long long

So far we’ve just generally been using two integer types:

* char
* int

Shttps://en.wikipedia.org/wiki/ASCII
6https://en.wikipedia.org/wiki/Listfoffinformationﬁsystemﬁcharacterﬁsets
"https://en.wikipedia.org/wiki/Unicode
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and we recently learned about the unsigned variants of the integer types. And we learned that char was
secretly a small int in disguise. So we know the ints can come in multiple bit sizes.

But there are a couple more integer types we should look at, and the minimum minimum and maximum values
they can hold.

Yes, I said “minimum” twice. The spec says that these types will hold numbers of at least these sizes, so your
implementation might be different. The header file <limits.h> defines macros that hold the minimum and
maximum integer values; rely on that to be sure, and never hardcode or assume these values.

These additional types are short int, long int, and long long int. Commonly, when using these types,
C developers leave the int part off (e.g. Long long), and the compiler is perfectly happy.

// These two lines are equivalent:
long long int Xx;
long long Xx;

// And so are these:
short int x;
short x;

Let’s take a look at the integer data types and sizes in ascending order, grouped by signedness.

Type Minimum Bytes Minimum Value Maximum Value
char 1 -127 or 0 127 or 255°
signed char 1 -127 127
short 2 -32767 32767
int 2 -32767 32767
long 4 -2147483647 2147483647
long long 8 -9223372036854775807  9223372036854775807
unsigned char 1 0 255
unsigned short 2 0 65535
unsigned int 2 0 65535
unsigned long 4 0 4294967295
unsigned long long 8 0 18446744073709551615

There is no long long long type. You can’t just keep adding longs like that. Don’t be silly.

Two’s complement fans might have noticed something funny about those numbers. Why does, for
example, the signed char stop at -127 instead of -128? Remember: these are only the minimums
required by the spec. Some number representations (like sign and magnitude®) top off at +127.

“https://en.wikipedia.org/wiki/Signed_number_representations#Signed_magnitude_representation

Let’s run the same table on my 64-bit, two’s complement system and see what comes out:

Type My Bytes Minimum Value Maximum Value
char 1 -128 127°
signed char 1 -128 127
short 2 -32768 32767
int 4 -2147483648 2147483647
long 8 -9223372036854775808  9223372036854775807
long long 8 -9223372036854775808  9223372036854775807

8Depends on if a char defaults to signed char or unsigned char
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Type My Bytes Minimum Value Maximum Value
unsigned char 1 0 255
unsigned short 2 0 65535
unsigned int 4 0 4294967295
unsigned long 8 0 18446744073709551615
unsigned long long 8 0 18446744073709551615

That’s a little more sensible, but we can see how my system has larger limits than the minimums in the

specification.

So what are the macros in <limits.h>?

Type

Min Macro Max Macro

char

signed char
short

int

long

long long
unsigned char
unsigned short
unsigned int
unsigned long
unsigned long long

CHAR_MIN CHAR_MAX
SCHAR_MIN SCHAR_MAX
SHRT_MIN SHRT_MAX
INT_MIN INT_MAX

LONG_MIN LONG_MAX
LLONG_MIN LLONG_MAX

0

0
(0]
0
(0]

UCHAR_MAX
USHRT_MAX
UINT_MAX
ULONG_MAX
ULLONG_MAX

Notice there’s a way hidden in there to determine if a system uses signed or unsigned chars. If

CHAR_MAX == UCHAR_MAX, it must be unsigned.

Also notice there’s no minimum macro for the unsigned variants—they’re just 0.

14.4 More Float: double and long double

Let’s see what the spec has to say about floating point numbers in §5.2.4.2.291-2:

9My char is signed.

The following parameters are used to define the model for each floating-point type:

Parameter Definition

s sign (1)

b base or radix of exponent representation (an
integer > 1)

e exponent (an integer between a minimum e, ;,,
and a maximum e,,, )

P precision (the number of base-b digits in the
significand)

fx nonnegative integers less than b (the significand
digits)
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A floating-point number (z) is defined by the following model:
P
z = sb° Z fkb_k7 Cmin <ex< Cmax
k=1

I hope that cleared it right up for you.
Okay, fine. Let’s step back a bit and see what’s practical.
Note: we refer to a bunch of macros in this section. They can be found in the header <float.h>.

Floating point number are encoded in a specific sequence of bits (IEEE-754 format'? is tremendously popular)
in bytes.

Diving in a bit more, the number is basically represented as the significand (which is the number part—the
significant digits themselves, also sometimes referred to as the mantissa) and the exponent, which is what
power to raise the digits to. Recall that a negative exponent can make a number smaller.

Imagine we’re using 10 as a number to raise by an exponent. We could represent the following numbers by
using a significand of 12345, and exponents of —3, 4, and 0 to encode the following floating point values:

12345 x 1073 = 12.345

12345 x 10* = 123450000

12345 x 10° = 12345

For all those numbers, the significand stays the same. The only difference is the exponent.

On your machine, the base for the exponent is probably 2, not 10, since computers like binary. You can
check it by printing the FLT_RADIX macro.

So we have a number that’s represented by a number of bytes, encoded in some way. Because there are a
limited number of bit patterns, a limited number of floating point numbers can be represented.

But more particularly, only a certain number of significant decimal digits can be represented accurately.
How can you get more? You can use larger data types!

And we have a couple of them. We know about float already, but for more precision we have double. And
for even more precision, we have long double (unrelated to long int except by name).

The spec doesn’t go into how many bytes of storage each type should take, but on my system, we can see the
relative size increases:

Type sizeof
float 4
double 8
long double 16

So each of the types (on my system) uses those additional bits for more precision.

But how much precision are we talking, here? How many decimal numbers can be represented by these
values?

Well, C provides us with a bunch of macros in <float . h> to help us figure that out.

It gets a little wonky if you are using a base-2 (binary) system for storing the numbers (which is virtually
everyone on the planet, probably including you), but bear with me while we figure it out.

Ohttps://en.wikipedia.org/wiki/IEEE_754
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14.4.1 How Many Decimal Digits?

The million dollar question is, “How many significant decimal digits can I store in a given floating point type
so that I get out the same decimal number when I print it?”

The number of decimal digits you can store in a floating point type and surely get the same number back out
when you print it is given by these macros:

Type Decimal Digits You Can Store  Minimum
float FLT_DIG 6
double DBL_DIG 10
long double LDBL_DIG 10

On my system, FLT_DIG is 6, so I can be sure that if I print out a 6 digit float, I’ll get the same thing
back. (It could be more digits—some numbers will come back correctly with more digits. But 6 is definitely
coming back.)

For example, printing out f Loats following this pattern of increasing digits, we apparently make it to 8 digits
before something goes wrong, but after that we’re back to 7 correct digits.

.12345

.123456

.1234567

.12345678

.123456791 <-- Things start going wrong
.1234567910

©O 00 0 006

Let’s do another demo. In this code we’ll have two floats that both hold numbers that have FLT_DIG
significant decimal digits'!. Then we add those together, for what should be 12 significant decimal digits.
But that’s more than we can store in a float and correctly recover as a string—so we see when we print it
out, things start going wrong after the 7th significant digit.

#include <stdio.h>

#include <float.h>

int main(void)

{
// Both these numbers have 6 significant digits, so they can be
// stored accurately in a float:
float f = 3.14159f;
float g = 0.00000265358f;
printf("%.5f\n", f); // 3.14159 -- correct!
printf("%.11f\n", g); // 0.00000265358 -- correct!
// Now add them up
f += g; // 3.14159265358 is what f _should_ be
printf("%.11f\n", f); // 3.14159274101 -- wrong!

}

U This program runs as its comments indicate on a system with FLT_DIG of 6 that uses IEEE-754 base-2 floating point numbers.
Otherwise, you might get different output.
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(The above code has an f after the numeric constants—this indicates that the constant is type float, as
opposed to the default of double. More on this later.)

Remember that FLT_DIG is the safe number of digits you can store in a float and retrieve correctly.

Sometimes you might get one or two more out of it. But sometimes you’ll only get FLT_DIG digits back.
The sure thing: if you store any number of digits up to and including FLT_DIG in a float, you’re sure to get
them back correctly.

So that’s the story. FLT_DIG. The End.

...Orisit?

14.4.2 Converting to Decimal and Back
But storing a base 10 number in a floating point number and getting it back out is only half the story.

Turns out floating point numbers can encode numbers that require more decimal places to print out completely.
It’s just that your big decimal number might not map to one of those numbers.

That is, when you look at floating point numbers from one to the next, there’s a gap. If you try to encode
a decimal number in that gap, it’ll use the closest floating point number. That’s why you can only encode
FLT_DIG for a float.

But what about those floating point numbers that aren’t in the gap? How many places do you need to print
those out accurately?

Another way to phrase this question is for any given floating point number, how many decimal digits do I
have to preserve if I want to convert the decimal number back into an identical floating point number? That
is, how many digits do I have to print in base 10 to recover all the digits in base 2 in the original number?

Sometimes it might only be a few. But to be sure, you’ll want to convert to decimal with a certain safe number
of decimal places. That number is encoded in the following macros:

Macro Description

FLT_DECIMAL_DIG Number of decimal digits encoded in a float.
DBL_DECIMAL_DIG Number of decimal digits encoded in a double.
LDBL_DECIMAL_DIG Number of decimal digits encoded in a long double.
DECIMAL_DIG Same as the widest encoding, LDBL_DECIMAL_DIG.

Let’s see an example where DBL_DIG is 15 (so that’s all we can have in a constant), but DBL_DECIMAL_DIG
is 17 (so we have to convert to 17 decimal numbers to preserve all the bits of the original double).

Let’s assign the 15 significant digit number 0.123456789012345 to x, and let’s assign the 1 significant digit
number 0.0000000000000006 to V.

X is exact: 0.12345678901234500 Printed to 17 decimal places
y 1is exact: 0.00000000000000060

But let’s add them together. This should give 0.1234567890123456, but that’s more than DBL_DIG, so
strange things might happen... let’s look:

X + y not quite right: 0.12345678901234559 Should end in 4560!

That’s what we get for printing more than DBL_DIG, right? But check this out... that number, above, is
exactly representable as it is!

If we assign 0.12345678901234559 (17 digits) to z and print it, we get:
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z 1s exact: 0.12345678901234559 17 digits correct! More than DBL_DIG!

If we’d truncated z down to 15 digits, it wouldn’t have been the same number. That’s why to preserve all the
bits of a double, we need DBL_DECIMAL_DIG and not just the lesser DBL_DIG.

All that being said, it’s clear that when we’re messing with decimal numbers in general, it’s not safe to print
more than FLT_DIG, DBL_DIG, or LDBL_DIG digits to be sensible in relation to the original base 10 numbers
and any subsequent math.

But when converting from float to a decimal representation and back to float, definitely use
FLT_DECIMAL_DIG to do that so that all the bits are preserved exactly.

14.5 Constant Numeric Types

When you write down a constant number, like 1234, it has a type. But what type is it? Let’s look at how C
decides what type the constant is, and how to force it to choose a specific type.

14.5.1 Hexadecimal and Octal
In addition to good ol’ decimal like Grandma used to bake, C also supports constants of different bases.

If you lead a number with 0x, it is read as a hex number:

int a OXx1A2B; // Hexadecimal
int b = 0xl1a2b; // Case doesn't matter for hex digits

printf("%x", a); // Print a hex number, "la2b"

If you lead a number with a 0, it is read as an octal number:

int a = 012;

printf("%o\n", a); // Print an octal number, "12"

This is particularly problematic for beginner programmers who try to pad decimal numbers on the left with
0 to line things up nice and pretty, inadvertently changing the base of the number:

int x 11111; // Decimal 11111
int y 00111; // Decimal 73 (Octal 111)
int z = 01111; // Decimal 585 (Octal 1111)

14.5.1.1 A Note on Binary

An unofficial extension'? in many C compilers allows you to represent a binary number with a @b prefix:

int x = 0b101010; // Binary 101010

printf("%d\n", x); // Prints 42 decimal

121p’s really surprising to me that C doesn’t have this in the spec yet. In the C99 Rationale document, they write, “A proposal to add
binary constants was rejected due to lack of precedent and insufficient utility.” Which seems kind of silly in light of some of the other
features they kitchen-sinked in there! I’ll bet one of the next releases has it.
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There’s no printf() format specifier for printing a binary number. You have to do it a character at a time
with bitwise operators.

14.5.2 Integer Constants

You can force a constant integer to be a certain type by appending a suffix to it that indicates the type.

We’ll do some assignments to demo, but most often devs leave off the suffixes unless needed to be precise.
The compiler is pretty good at making sure the types are compatible.

int x = 1234;

long int X = 1234L;

long long int x = 1234LL

unsigned int X = 1234U;
unsigned long int X = 1234UL;
unsigned long long int x = 1234ULL;

The suffix can be uppercase or lowercase. And the U and L or LL can appear either one first.

Type Suffix
int None
long int L
long long int LL
unsigned int U
unsigned long int UL

unsigned long long int ULL

I mentioned in the table that “no suffix” means int... but it’s actually more complex than that.

So what happens when you have an unsuffixed number like:

int x = 1234;

What type is it?
What C will generally do is choose the smallest type from int up that can hold the value.
But specifically, that depends on the number’s base (decimal, hex, or octal), as well.

The spec has a great table indicating which type gets used for what unsuffixed value. In fact, I’m just going
to copy it wholesale right here.

C11 §6.4.4.195 reads, “The type of an integer constant is the first of the first of the corresponding list in
which its value can be represented.”

And then goes on to show this table:
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Octal or Hexadecimal

Suffix Decimal Constant Constant
none int int
long int unsigned int
long int
unsigned long int
long long int
unsigned long long int
uoruy unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int unsigned long long int
lorL long int long int
long long int unsigned long int
long long int
unsigned long long int
Both u or U unsigned long int unsigned long int
and LorL unsigned long long int unsigned long long int
llorLL long long int long long int
unsigned long long int
Both u or U unsigned long long int unsigned long long int
and 1l or LL

What that’s saying is that, for example, if you specify a number like 123456789U, first C will see if it can
be unsigned int. If it doesn’t fit there, it’ll try unsigned long int. And then unsigned long long int.
It’1l use the smallest type that can hold the number.

14.5.3 Floating Point Constants
You’d think that a floating point constant like 1.23 would have a default type of float, right?
Surprise! Turns out unsuffiexed floating point numbers are type double! Happy belated birthday!

You can force it to be of type float by appending an f (or F—it’s case-insensitive). You can force it to be
of type long double by appending 1 (or L).

Type Suffix
float F
double None

long double L

For example:

float x = 3.14f;
double x = 3.14;
long double x = 3.14L;

This whole time, though, we’ve just been doing this, right?
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float x = 3.14;

Isn’t the left a float and the right a double? Yes! But C’s pretty good with automatic numeric conversions,
so it’s more common to have an unsuffixed floating point constant than not. More on that later.

14.5.3.1 Scientific Notation

Remember earlier when we talked about how a floating point number can be represented by a significand,
base, and exponent?

Well, there’s a common way of writing such a number, shown here followed by it’s more recognizable equiv-
alent which is what you get when you actually run the math:

1.2345 x 10% = 1234.5

Writing numbers in the form s x b¢ is called scientific notation'®. In C, these are written using “E notation”,
so these are equivalent:

Scientific Notation E notation

1.2345 x 1073 = 0.0012345 1.2345e-3
1.2345 x 10% = 123450000 1.2345e+8

You can print a number in this notation with %e:

‘ printf("%e\n", 123456.0); // Prints 1.234560e+05 ’

A couple little fun facts about scientific notation:

* You don’t have to write them with a single leading digit before the decimal point. Any number of
numbers can go in front.

‘ double x = 123.456e+3; // 123456 ’

However, when you print it, it will change the exponent so there is only one digit in front of the decimal
point.

* The plus can be left off the exponent, as it’s default, but this is uncommon in practice from what I’ve
seen.

1.2345e10 == 1.2345e+10

* You can apply the F or L suffixes to E-notation constants:

1.2345e10F
1.2345e10L

14.5.3.2 Hexadecimal Floating Point Constants
But wait, there’s more floating to be done!
Turns out there are hexadecimal floating point constants, as well!

These work similar to decimal floating point numbers, but they begin with a 8x just like integer numbers.

3https://en.wikipedia.org/wiki/Scientific_notation
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The catch is that you must specify an exponent, and this exponent produces a power of 2. That is: 2.
And then you use a p instead of an e when writing the number:
So @xa.1p3is 10.0625 x 23 == 80.5.

When using floating point hex constants, We can print hex scientific notation with %a:

double x = Oxa.1p3;

printf("%a\n", x),; // 0x1.42p+6
printf("%f\n", x); // 80.500000




112 Chapter 14. Types II: Way More Types!



Chapter 15

Types III: Conversions

In this chapter, we want to talk all about converting from one type to another. C has a variety of ways of
doing this, and some might be a little different that you’re used to in other languages.

Before we talk about how to make conversions happen, let’s talk about how they work when they do happen.

15.1 String Conversions
Unlike many languages, C doesn’t do string-to-number (and vice-versa) conversions in quite as streamlined
a manner as it does numeric conversions.

For these, we’ll have to call functions to do the dirty work.

15.1.1 Numeric Value to String

When we want to convert a number to a string, we can use either sprintf() (pronounced SPRINT-f) or
snprintf() (s-n-print-f)!

These basically work like printf (), except they output to a string instead, and you can print that string later,
or whatever.

For example, turning part of the value 7 into a string:

#include <stdio.h>
int main(void)
{
char s[10];
float f = 3.14159;
// Convert "f" to string, storing in "s", writing at most 10 characters
// including the NUL terminator
snprintf(s, 10, "%f", f);
printf("String value: %s\n", s); // String value: 3.141590
}

IThey’re the same except snprintf() allows you to specify a maximum number of bytes to output, preventing the overrunning of
the end of your string. So it’s safer.
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So you can use %d or %u like you’re used to for integers.

15.1.2 String to Numeric Value

There are a couple families of functions to do this in C. We’ll call these the atoi (pronounced a-to-i) family
and the strtol (stir-to-long) family.

For basic conversion from a string to a number, try the atoi functions from <stdlib.h>. These have bad
error-handling characteristics (including undefined behavior if you pass in a bad string), so use them carefully.

Function Description

atoi String to int
atof String to float
atol String to long int

atoll String to long long int

Though the spec doesn’t cop to it, the a at the beginning of the function stands for ASCII?, so really atoi ()
is “ASCII-to-integer”, but saying so today is a bit ASCII-centric.

Here’s an example converting a string to a float:

#include <stdio.h>
#include <stdlib.h>

int main(void)

{
char *pi = "3.14159";
float f;
f = atof(pi);
printf("%f\n", f);

}

But, like I said, we get undefined behavior from weird things like this:

int x = atoi("what"); // "What" ain't no number I ever heard of

(When I run that, I get © back, but you really shouldn’t count on that in any way. You could get something
completely different.)

For better error handling characteristics, let’s check out all those strtol functions, also in <std1ib.h>. Not
only that, but they convert to more types and more bases, too!

Function Description

strtol String to long int

strtoll String to long long int

strtoul String to unsigned long int
strtoull String to unsigned long long int
strtof String to float

strtod String to double

Zhttps://en.wikipedia.org/wiki/ASCII
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Function Description

strtold String to long double

These functions all follow a similar pattern of use, and are a lot of people’s first experience with pointers to
pointers! But never fret—it’s easier than it looks.

Let’s do an example where we convert a string to an unsigned long, discarding error information (i.e. in-
formation about bad characters in the input string):

#include <stdio.h>

#include <stdlib.h>

int main(void)

{
char *s = "3490";
// Convert string s, a number in base 10, to an unsigned long int.
// NULL means we don't care to learn about any error information.
unsigned long int x = strtoul(s, NULL, 10);
printf("%lu\n", x); // 3490

}

Notice a couple things there. Even though we didn’t deign to capture any information about error characters
in the string, strtoul() won’t give us undefined behavior; it will just return 0.

Also, we specified that this was a decimal (base 10) number.

Does this mean we can convert numbers of different bases? Sure! Let’s do binary!

#include <stdio.h>
#include <stdlib.h>
int main(void)
{
char *s = "101010"; // What's the meaning of this number?
// Convert string s, a number in base 2, to an unsigned long int.
unsigned long int x = strtoul(s, NULL, 2);
printf("%lu\n", x); // 42
}

OK, that’s all fun and games, but what’s with that NULL in there? What’s that for?

That helps us figure out if an error occurred in the processing of the string. It’s a pointer to a pointer to a
char, which sounds scary, but isn’t once you wrap your head around it.

Let’s do an example where we feed in a deliberately bad number, and we’ll see how strtol() lets us know
where the first invalid digit is.
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{

#include <stdio.h>
#include <stdlib.h>

int main(void)

char *s = "34x90"; // "x" is not a valid digit in base 10!
char *badchar;

// Convert string s, a number in base 10, to an unsigned long int.
unsigned long int x = strtoul(s, &badchar, 10);

// It tries to convert as much as possible, so gets this far:
printf("%lu\n", x); // 34

// But we can see the offending bad character because badchar
// points to it!

printf("Invalid character: %c\n", *badchar); // "x"

So there we have strtoul() modifying what badchar points to in order to show us where things went
3
wrong”.

But what if nothing goes wrong? In that case, badchar will point to the NUL terminator at the end of the
string. So we can test for it:

{

#include <stdio.h>
#include <stdlib.h>

int main(void)

char *s = "3490"; // "x" is not a valid digit in base 10!
char *badchar;

// Convert string s, a number in base 10, to an unsigned long int.
unsigned long int x = strtoul(s, &badchar, 10);

// Check if things went well

if (*badchar == '\0') {
printf("Success! %lu\n", x);
} else {

printf("Partial conversion: %lu\n", X);
printf("Invalid character: %c\n", *badchar);

So there you have it. The atoi()-style functions are good in a controlled pinch, but the strtol()-style

3We have to pass a pointer to badchar to strtoul() or it won’t be able to modify it in any way we can see, analogous to why you
have to pass a pointer to an int to a function if you want that function to be able to change that value of that int.
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functions give you far more control over error handling and the base of the input.

15.2 char Conversions

What if you have a single character with a digit in it, like '5"... Is that the same as the value 5?

Let’s try it and see.

{printf("%d %d\n", 5, '5'"); ’

On my UTF-8 system, this prints:

‘553 ’

So... no. And 53? What is that? That’s the UTF-8 (and ASCII) code point for the character symbol '5'*
So how do we convert the character '5' (which apparently has value 53) into the value 5?
With one clever trick, that’s how!

The C Standard guarantees that these character will have code points that are in sequence and in this order:

6 1 2 3 4 5 6 7 8 9

Ponder for a second-how can we use that? Spoilers ahead...

Let’s take a look at the characters and their code points in UTF-8:

6 1 2 3 4 5 6 7 8 9
48 49 50 51 52 53 54 55 56 57

You see there that '5" is 53, just like we were getting. And '0" is 48.

So we can subtract '@"' from any digit character to get its numeric value:

char ¢ = '6';
int x = c¢; // x has value 54, the code point for '6'

int y =c - '0'; // y has value 6, just like we want

And we can convert the other way, too, just by adding the value on.

int x = 6;
char c = x + '0'; // c has value 54

printf("%d\n", c); // prints 54
printf("%c\n", c); // prints 6 with %c

You might think this is a weird way to do this conversion, and by today’s standards, it certainly is. But
back in the olden days when computers were made literally out of wood, this was the method for doing this
conversion. And it wasn’t broke, so C never fixed it.

4Each character has a value associated with it for any given character encoding scheme.
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15.3 Numeric Conversions

15.3.1 Boolean

If you convert a zero to bool, the result is 0. Otherwise it’s 1.

15.3.2 Integer to Integer Conversions

If an integer type is converted to unsigned and doesn’t fit in it, the unsigned result wraps around odometer-
style until it fits in the unsigned®.

If an integer type is converted to a signed number and doesn’t fit, the result is implementation-defined!
Something documented will happen, but you’ll have to look it up®

15.3.3 Integer and Floating Point Conversions
If a floating point type is converted to an integer type, the fractional part is discarded with prejudice’.

But—and here’s the catch—if the number is too large to fit in the integer, you get undefined behavior. So
don’t do that.

Going From integer or floating point to floating point, C makes a best effort to find the closest floating point
number to the integer that it can.

Again, though, if the original value can’t be represented, it’s undefined behavior.

15.4 Implicit Conversions

These are conversions the compiler does automatically for you when you mix and match types.

15.4.1 The Integer Promotions

In a number of places, if an int can be used to represent a value from char or short (signed or unsigned),
that value is promoted up to int. If it doesn’t fit in an int, it’s promoted to unsigned int.

This is how we can do something like this:

char x = 10, y = 20;
int 1 = x + vy;

In that case, x and y get promoted to int by C before the math takes place.

The integer promotions take place during The Usual Arithmetic Conversions, with variadic functions®, unary
+and - operators, or when passing values to functions without prototypes®.

>In practice, what’s probably happening on your implementation is that the high-order bits are just being dropped from the result, so
a 16-bit number 6x1234 being converted to an 8-bit number ends up as ©x0034, or just 0x34.

6Again, in practice, what will likely happen on your system is that the bit pattern for the original will be truncated and then just
used to represent the signed number, two’s complement. For example, my system takes an unsigned char of 192 and converts it to
signed char -64. In two’s complement, the bit pattern for both these numbers is binary 11000000.

7Not really—it’s just discarded regularly.

8Functions with a variable number of arguments.

9This is rarely done because the compiler will complain and having a prototype is the Right Thing to do. I think this still works for
historic reasons, before prototypes were a thing.
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15.4.2 The Usual Arithmetic Conversions

These are automatic conversions that C does around numeric operations that you ask for. (That’s actually
what they’re called, by the way, by C11 §6.3.1.8.) Note that for this section, we’re just talking about numeric
types—strings will come later.

These conversions answer questions about what happens when you mix types, like this:

int x =3 + 1.2; // Mixing int and double
// 4.2 is converted to int
// 4 is stored in x

float y = 12 * 2; // Mixing float and int
// 24 is converted to float
// 24.0 is stored in y

Do they become ints? Do they become floats? How does it work?
Here are the steps, paraphrased for easy consumption.
1. If one thing in the expression is a floating type, convert the other things to that floating type.

2. Otherwise, if both types are integer types, perform the integer promotions on each, then make the
operand types as big as they need to be hold the common largest value. Sometimes this involves
changing signed to unsigned.

If you want to know the gritty details, check out C11 §6.3.1.8. But you probably don’t.

Just generally remember that int types become float types if there’s a floating point type anywhere in there,
and the compiler makes an effort to make sure mixed integer types don’t overflow.

Finally, if you convert from one floating point type to another, the compiler will try to make an exact con-
version. If it can’t, it’ll do the best approximation it can. If the number is too large to fit in the type you’re
converting into, boom: undefined behavior!

15.4.3 void*

The void* type is interesting because it can be converted from or to any pointer type.

int x = 10;
void *p = &x; // &x is type int*, but we store it in a void*

int *q = p; // p is void*, but we store it in an int*

15.5 Explicit Conversions

These are conversions from type to type that you have to ask for; the compiler won’t do it for you.
You can convert from one type to another by assigning one type to another with an =.

You can also convert explicitly with a cast.

15.5.1 Casting

You can explicitly change the type of an expression by putting a new type in parentheses in front of it. Some
C devs frown on the practice unless absolutely necessary, but it’s likely you’ll come across some C code with
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these in it.
Let’s do an example where we want to convert an int into a long so that we can store it in a Long.

Note: this example is contrived and the cast in this case is completely unnecessary because the x + 12 ex-
pression would automatically be changed to Long int to match the wider type of y.

int x = 10;
long int y = (long int)x + 12;

In that example, even those x was type int before, the expression ( long int)x has type long int. We say,
“We cast x to long int.”

More commonly, you might see a cast being used to convert a void* into a specific pointer type so it can be
dereferenced.

A callback from the built-in gsort () function might display this behavior since it has void*s passed into it:

int compar(const void *eleml, const void *elem2)

{
if (*((const int*)elem2) > *((const int*)eleml)) return 1;
if (*((const int*)elem2) < *((const int*)eleml)) return -1;
return 0O;

}

But you could also clearly write it with an assignment:

int compar(const void *eleml, const void *elem2)

{
const int *el = elemi;
const int *e2 = elem2;
return *e2 - *el;

}

One place you’ll see casts more commonly is to avoid a warning when printing pointer values with the
rarely-used %p which gets picky with anything other than a void*:

int x = 3490;
int *p = &x;

printf("%p\n", p);

generates this warning:

warning: format ‘%p’ expects argument of type ‘void *’, but argument
2 has type ‘int *’

You can fix it with a cast:

printf("%p\n", (void *)p);

Another place is with explicit pointer changes, if you don’t want to use an intervening void*, but these are
also pretty uncommon:
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long x = 3490;
long *p = &x;
unsigned char *c = (unsigned char *)p;

A third place it’s often required is with the character conversion functions in <ctype . h>'° where you should
cast questionably-signed values to unsigned char to avoid undefined behavior.

Again, casting is rarely needed in practice. If you find yourself casting, there might be another way to do the
same thing, or maybe you’re casting unnecessarily.

Or maybe it is necessary. Personally, I try to avoid it, but am not afraid to use it if I have to.

Ohttps://beej.us/guide/bgclr/html/split/ctype.html
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Types IV: Qualifiers and Specifiers

Now that we have some more types under our belts, turns out we can give these types some additional
attributes that control their behavior. These are the type qualifiers and storage-class specifiers.

16.1 Type Qualifiers

These are going to allow you to declare constant values, and also to give the compiler optimization hints that
it can use.

16.1.1 const

This is the most common type qualifier you’ll see. It means the variable is constant, and any attempt to
modify it will result in a very angry compiler.

const int x = 2;

X = 4; // COMPILER PUKING SOUNDS, can't assign to a constant

You can’t change a const value.

Often you see const in parameter lists for functions:

void foo(const int x)

{
printf("%d\n", x + 30); // OK, doesn't modify "x"

}

16.1.1.1 const and Pointers
This one gets a little funky, because there are two usages that have two meanings when it comes to pointers.

For one thing, we can make it so you can’t change the thing the pointer points to. You do this by putting the
const up front with the type name (before the asterisk) in the type declaration.

int x[] = {10, 20};
const int *p = x;

123
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p++; // We can modify p, no problem

*p = 30; // Compiler error! Can't change what it points to

Somewhat confusingly, these two things are equivalent:

const int *p; // Can't modify what p points to
int const *p; // Can't modify what p points to, just like the previous line

Great, so we can’t change the thing the pointer points to, but we can change the pointer itself. What if we
want the other way around? We want to be able to change what the pointer points to, but not the pointer
itself?

Just move the const after the asterisk in the declaration:

int *const p; // We can't modify "p" with pointer arithmetic

p++; // Compiler error!

But we can modify what they point to:

int x = 10;
int *const p = &x;

*p = 20; // Set "x" to 20, no problem

You can also do make both things const:

const int *const p; // Can't modify p or *p!

Finally, if you have multiple levels of indirection, you should const the appropriate levels. Just because a
pointer is const, doesn’t mean the pointer it points to must also be. You can explicitly set them like in the
following examples:

char **p;
p++; // OK!
(*p)++; // OK!

char **const p;
p++; // Error!
(*p)++; // OK!

char *const *p;
p++; // OKl!
(*p)++; // Error!

char *const *const p;
p++; // Error!
(*p)++; // Error!

16.1.1.2 const Correctness

One more thing I have to mention is that the compiler will warn on something like this:
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const int x = 20;
int *p = &x;

saying something to the effect of:

initialization discards 'const' qualifier from pointer type target

What’s happening there?

Well, we need to look at the types on either side of the assignment:

const int x = 20;
int *p = &x;

// A A
// I I
// int* const int*

The compiler is warning us that the value on the right side of the assignment is const, but the one of the
left is not. And the compiler is letting us know that it is discarding the “const-ness” of the expression on the
right.

That is, we can still try to do the following, but it’s just wrong. The compiler will warn, and it’s undefined
behavior:

const int x = 20;
int *p = &x;

*p = 40; // Undefined behavior--maybe it modifies "x", maybe not!

printf("%d\n", x); // 40, if you're lucky

16.1.2 restrict

TLDR: you never have to use this and you can ignore it every time you see it. If you use it correctly, you
will likely realize some performance gain. If you use it incorrectly, you will realize undefined behavior.

restrict is a hint to the compiler that a particular piece of memory will only be accessed by one pointer
and never another. (That is, there will be no aliasing of the particular object the restrict pointer points
to.) If a developer declares a pointer to be restrict and then accesses the object it points to in another way
(e.g. via another pointer), the behavior is undefined.

Basically you’re telling C, “Hey—I guarantee that this one single pointer is the only way I access this memory,
and if I’'m lying, you can pull undefined behavior on me.”

And C uses that information to perform certain optimizations. For instance, if you’re dereferencing the
restrict pointer repeatedly in a loop, C might decide to cache the result in a register and only store the
final result once the loop completes. If any other pointer referred to that same memory and accessed it in the
loop, the results would not be accurate.

(Note that restrict has no effect if the object pointed to is never written to. It’s all about optimizations
surrounding writes to memory.)

Let’s write a function to swap two variables, and we’ll use the restrict keyword to assure C that we’ll
never pass in pointers to the same thing. And then let’s blow it and try passing in pointers to the same thing.
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void swap(int *restrict a, int *restrict b)

{
int t;
t = *a;
*a = *b;
*b = t;
}
int main(void)
{
int x = 10, y = 20;
swap(&x, &y); // OK! "a" and "b", above, point to different things
swap(&x, &x); // Undefined behavior! "a" and "b" point to the same thing
}

If we were to take out the restrict keywords, above, that would allow both calls to work safely. But then
the compiler might not be able to optimize.

restrict has block scope, that is, the restriction only lasts for the scope it’s used. If it’s in a parameter list
for a function, it’s in the block scope of that function.

If the restricted pointer points to an array, it only applies to the individual objects in the array. Other pointers
could read and write from the array as long as they didn’t read or write any of the same elements as the
restricted one.

If it’s outside any function in file scope, the restriction covers the entire program.

You’re likely to see this in library functions like printf():

int printf(const char * restrict format, ...);

Again, that’s just telling the compiler that inside the printf() function, there will be only one pointer that
refers to any part of that format string.

One last note: if you’re using array notation in your function parameter for some reason instead of pointer
notation, you can use restrict like so:

void foo(int p[restrict]) // With no size

void foo(int p[restrict 10]) // Or with a size

But pointer notation would be more common.

16.1.3 volatile
You’re unlikely to see or need this unless you’re dealing with hardware directly.
volatile tells the compiler that a value might change behind its back and should be looked up every time.

An example might be where the compiler is looking in memory at an address that continuously updates
behind the scenes, e.g. some kind of hardware timer.

If the compiler decides to optimize that and store the value in a register for a protracted time, the value in
memory will update and won’t be reflected in the register.
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By declaring something volatile, you’re telling the compiler, “Hey, the thing this points at might change
at any time for reasons outside this program code.”

volatile int *p;

16.1.4 _Atomic

This is an optional C feature that we’ll talk about in the Atomics chapter.

16.2 Storage-Class Specifiers

Storage-class specifiers are similar to type quantifiers. They give the compiler more information about the
type of a variable.

16.2.1 auto

You barely ever see this keyword, since auto is the default for block scope variables. It’s implied.

These are the same:

int aj; // auto is the default...
auto int a; // So this is redundant

The auto keyword indicates that this object has automatic storage duration. That is, it exists in the scope in
which it is defined, and is automatically deallocated when the scope is exited.

One gotcha about automatic variables is that their value is indeterminate until you explicitly initialize them.
We say they’re full of “random” or “garbage” data, though neither of those really makes me happy. In any
case, you won’t know what’s in it unless you initialize it.

Always initialize all automatic variables before use!

16.2.2 static
This keyword has two meanings, depending on if the variable is file scope or block scope.

Let’s start with block scope.

16.2.2.1 static in Block Scope

In this case, we’re basically saying, “I just want a single instance of this variable to exist, shared between
calls.”

That is, its value will persist between calls.

static in block scope with an initializer will